-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathexplore.py
852 lines (639 loc) · 26.9 KB
/
explore.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
from __future__ import division
from collections import Counter
from nltk.corpus import stopwords
from nltk.stem import SnowballStemmer
from sklearn.metrics import log_loss
import pandas as pd
import numpy as np
import xgboost as xgb
import math
import nltk
from nltk import ngrams
from sklearn.cross_validation import train_test_split
from string import punctuation
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn.preprocessing import MinMaxScaler
from simhash import Simhash
import plotly
import plotly.plotly as py
import plotly.graph_objs as go
from matplotlib import pyplot
from sklearn.manifold import TSNE
import pickle
from tqdm import tqdm, tqdm_pandas
tqdm_pandas(tqdm())
import spacy
nlp = spacy.load('en')
question_types = ["what", "how", "why", "is", "which", "can", "i", "who", "do", "where", "if", "does", "are", "when", "should", "will", "did", "has", "would", "have", "was", "could"]
def submit(p_test):
sub = pd.DataFrame()
sub['test_id'] = df_test['test_id']
sub['is_duplicate'] = p_test
sub.to_csv('simple_xgb.csv', index=False)
def get_inverse_freq(inverse_freq, count, min_count=2):
if count < min_count:
return 0
else:
return inverse_freq
def get_tf(text):
tf = {}
for word in text:
tf[word] = text.count(word)/len(text)
return tf
def tuple_similarity(q1_words, q2_words):
if len(q1_words) == 0 or len(q2_words) == 0:
return 0
common_words = len(set(q1_words).intersection(set(q2_words)))
all_words = len(set(q1_words).union(set(q2_words)))
return common_words/all_words
def get_ne_score(row):
q1_words = str(row.question1).lower().split()
q2_words = str(row.question2).lower().split()
# all_words_score = np.sum([weights.get(w, 0) for w in q1_words]) + np.sum([weights.get(w, 0) for w in q2_words])
q1 = nlp(unicode(str(row["question1"]), "utf-8"))
q2 = nlp(unicode(str(row["question2"]), "utf-8"))
q1_ne = q1.ents
q2_ne = q2.ents
q1_ne = set([str(i) for i in q1_ne])
q2_ne = set([str(i) for i in q2_ne])
if len(q1_ne) == 0:
q1_ne_ratio = 0
else:
q1_ne_ratio = len(q1_ne)/len(q1_words)
if len(q2_ne) == 0:
q2_ne_ratio = 0
else:
q2_ne_ratio = len(q2_ne)/len(q2_words)
common_ne = list(q1_ne.intersection(q2_ne))
# common_ne_weights = np.sum([weights.get(w, 0) for w in common_ne])
if len(q1_ne) + len(q2_ne) == 0:
common_ne_score = 0
else:
common_ne_score = len(common_ne)/(len(q1_words) + len(q2_words) - len(common_ne))
return pd.Series({
"q1_ne_ratio": q1_ne_ratio,
"q2_ne_ratio": q2_ne_ratio,
"ne_diff": abs(q1_ne_ratio - q2_ne_ratio),
"ne_score": common_ne_score
})
def basic_nlp(row):
# q1_tf = get_tf(q1_words)
# q2_tf = get_tf(q2_words)
q1_words = str(row.question1).lower().split()
q2_words = str(row.question2).lower().split()
#modify this!
if len(q1_words) == 0 or len(q2_words) == 0:
return 0
common_words = list(set(q1_words).intersection(q2_words))
common_words_score = np.sum([weights.get(w, 0) for w in common_words])
all_words_score = np.sum([weights.get(w, 0) for w in q1_words]) + np.sum([weights.get(w, 0) for w in q2_words]) - common_words_score
hamming_score = sum(1 for i in zip(q1_words, q2_words) if i[0]==i[1])/max(len(q1_words), len(q2_words))
jacard_score = len(common_words)/(len(q1_words) + len(q2_words) - len(common_words))
cosine_score = len(common_words)/(pow(len(q1_words),0.5)*pow(len(q2_words),0.5))
bigrams_q1 = set(ngrams(q1_words, 2))
bigrams_q2 = set(ngrams(q2_words, 2))
common_bigrams = len(bigrams_q1.intersection(bigrams_q2))
if common_bigrams == 0:
bigram_score = 0
else:
bigram_score = common_bigrams/(len(bigrams_q1.union(bigrams_q2)))
trigrams_q1 = set(ngrams(q1_words, 3))
trigrams_q2 = set(ngrams(q2_words, 3))
common_trigrams = len(trigrams_q1.intersection(trigrams_q2))
if common_trigrams == 0:
trigram_score = 0
else:
trigram_score = common_trigrams/(len(trigrams_q1.union(trigrams_q2)))
# sequence1 = get_word_bigrams(q1_words)
# sequence2 = get_word_bigrams(q2_words)
# try:
# simhash_diff = Simhash(sequence1).distance(Simhash(sequence2))/64
# except:
# simhash_diff = 0.5
q1 = nlp(unicode(str(row["question1"]), "utf-8"))
q2 = nlp(unicode(str(row["question2"]), "utf-8"))
q1_ne = q1.ents
q2_ne = q2.ents
q1_ne = set([str(i) for i in q1_ne])
q2_ne = set([str(i) for i in q2_ne])
if len(q1_ne) == 0:
q1_ne_ratio = 0
else:
q1_ne_ratio = len(q1_ne)/len(q1_words)
if len(q2_ne) == 0:
q2_ne_ratio = 0
else:
q2_ne_ratio = len(q2_ne)/len(q2_words)
common_ne = list(q1_ne.intersection(q2_ne))
# common_ne_weights = np.sum([weights.get(w, 0) for w in common_ne])
if len(q1_ne) + len(q2_ne) == 0:
common_ne_score = 0
else:
common_ne_score = len(common_ne)/(len(q1_words) + len(q2_words) - len(common_ne))
pos_hash = {}
common_pos = []
for word in q1:
if word.tag_ not in pos_hash:
pos_hash.update({word.tag_ : [word.text]})
else:
pos_hash[word.tag_].append(word.text)
for word in q2:
if word.tag_ not in pos_hash:
continue
if word.text in pos_hash[word.tag_]:
common_pos.append(word.text)
common_pos_score = np.sum([weights.get(w, 0) for w in common_pos])
all_pos_score = np.sum([weights.get(w, 0) for w in q1_words]) + np.sum([weights.get(w, 0) for w in q2_words]) - common_pos_score
q1_pronouns_count = 0
q2_pronouns_count = 0
for word in q1:
if str(word.tag_) == "PRP":
q1_pronouns_count += 1
for word in q2:
if str(word.tag_) == "PRP":
q2_pronouns_count += 1
pronouns_diff = abs(q1_pronouns_count - q2_pronouns_count)
q1_nc = q1.noun_chunks
q2_nc = q2.noun_chunks
q1_nc = set([str(i) for i in q1_nc])
q2_nc = set([str(i) for i in q2_nc])
common_nc = len(q1_nc.intersection(q2_nc))
if len(q1_nc) + len(q2_nc) == 0:
common_nc_score = 0
else:
common_nc_score = common_nc/(len(q1_nc) + len(q2_nc) - common_nc)
fw_q1 = q1_words[0]
fw_q2 = q2_words[0]
if fw_q1 == fw_q2 and fw_q1 in question_types:
question_type_same = 1
else:
question_type_same = 0
try:
q1_quotes = len(re.findall(r'\"(.+?)\"', row["question1"]))
except:
q1_quotes = 0
try:
q2_quotes = len(re.findall(r'\"(.+?)\"', row["question2"]))
except:
q2_quotes = 0
# if len(q1_ne) == 0:
# q1_ne_hash_freq = 1
# else:
# hash_key1 = hash("-".join(set([str(i).lower() for i in q1_ne])))
# if hash_key1 not in hash_table_ne:
# q1_ne_hash_freq = 1
# else:
# q1_ne_hash_freq = hash_table_ne[hash_key1]
# if len(q2_ne) == 0:
# q2_ne_hash_freq = 1
# else:
# hash_key2 = hash("-".join(set([str(i).lower() for i in q2_ne])))
# if hash_key2 not in hash_table_ne:
# q2_ne_hash_freq = 1
# else:
# q2_ne_hash_freq = hash_table_ne[hash_key2]
try:
q1_sents = len(nltk.tokenize.sent_tokenize(row.question1))
except:
q1_sents = 1
try:
q2_sents = len(nltk.tokenize.sent_tokenize(row.question2))
except:
q2_sents = 1
q1_exclaim = sum([1 for i in str(row.question1) if i == "!"])
q2_exclaim = sum([1 for i in str(row.question2) if i == "!"])
q1_question = sum([1 for i in str(row.question1) if i == "?"])
q2_question = sum([1 for i in str(row.question2) if i == "?"])
hash_key1 = hash(str(row["question1"]).lower())
if hash_key1 in hash_table:
q1_hash_freq = hash_table[hash_key1]
else:
q1_hash_freq = 1
hash_key2 = hash(str(row["question2"]).lower())
if hash_key2 in hash_table:
q2_hash_freq = hash_table[hash_key2]
else:
q2_hash_freq = 1
# if hash_key1 in pos_hash_table:
# q1_dup_ratio = pos_hash_table[hash_key1]/q1_hash_freq
# else:
# q1_dup_ratio = 0
# if hash_key2 in pos_hash_table:
# q2_dup_ratio = pos_hash_table[hash_key2]/q2_hash_freq
# else:
# q2_dup_ratio = 0
spacy_sim = q1.similarity(q2)
return pd.Series({
"weighted_word_match_ratio" : common_words_score/all_words_score,
"weighted_word_match_diff": all_words_score - common_words_score,
"weighted_word_match_sum": common_words_score,
"jacard_score": jacard_score,
"hamming_score": hamming_score,
"cosine_score": cosine_score,
"bigram_score": bigram_score,
"trigram_score": trigram_score,
"pos_score": common_pos_score/all_pos_score,
# "simhash_diff": simhash_diff,
"question_type_same": question_type_same,
"q1_stops": len(set(q1_words).intersection(stops))/len(q1_words),
"q2_stops": len(set(q2_words).intersection(stops))/len(q2_words),
"q1_len": len(str(row.question1)),
"q2_len": len(str(row.question2)),
"len_diff": abs(len(str(row.question1)) - len(str(row.question2))),
"len_avg": (len(str(row.question1)) + len(str(row.question2)))/2,
"q1_sents": q1_sents,
"q2_sents": q2_sents,
"sents_diff": abs(q1_sents - q2_sents),
"q1_words": len(q1_words),
"q2_words": len(q2_words),
"words_diff": abs(len(q1_words) - len(q2_words)),
"words_avg": (len(q1_words) + len(q2_words))/2,
"q1_caps_count": sum([1 for i in str(row.question1) if i.isupper()]),
"q2_caps_count": sum([1 for i in str(row.question2) if i.isupper()]),
"q1_exclaim": q1_exclaim,
"q2_exclaim": q2_exclaim,
"exclaim_diff": abs(q1_exclaim - q2_exclaim),
"q1_question": q1_question,
"q2_question": q2_question,
"question_diff": abs(q1_question - q2_question),
"ne_score": common_ne_score,
"nc_score": common_nc_score,
"q1_ne_ratio": q1_ne_ratio,
"q2_ne_ratio": q2_ne_ratio,
"ne_diff": abs(q1_ne_ratio - q2_ne_ratio),
"q1_quotes": q1_quotes,
"q2_quotes": q2_quotes,
"quotes_diff": abs(q1_quotes - q2_quotes),
# "q1_ne_hash_freq": q1_ne_hash_freq,
# "q2_ne_hash_freq": q2_ne_hash_freq,
# "chunk_hash_diff": abs(q1_ne_hash_freq - q2_ne_hash_freq),
"q1_hash_freq": q1_hash_freq,
"q2_hash_freq": q2_hash_freq,
"q_freq_avg": (q1_hash_freq + q2_hash_freq)/2,
"freq_diff": abs(q1_hash_freq - q2_hash_freq),
"spacy_sim": spacy_sim,
"q1_pronouns_count": q1_pronouns_count,
"q2_pronouns_count": q2_pronouns_count,
"pronouns_diff": pronouns_diff
# "q1_dup_ratio": q1_dup_ratio,
# "q2_dup_ratio": q2_dup_ratio,
# "q1_q2_dup_ratio_avg": (q1_dup_ratio + q2_dup_ratio)/2
})
def neighbor_intersection(row):
q1_neighbors = graph[row["question1"]]
q2_neighbors = graph[row["question2"]]
common_neighbors = set(q1_neighbors).intersection(q2_neighbors)
return len(common_neighbors)
def get_q1_second_degree_freq(row):
q1_neighbors = graph[row["question1"]]
q1_second_degree_neighbors = []
for i in q1_neighbors:
q1_second_degree_neighbors += graph[i]
return len(set(q1_second_degree_neighbors))
def get_q2_second_degree_freq(row):
q2_neighbors = graph[row["question2"]]
q2_second_degree_neighbors = []
for i in q2_neighbors:
q2_second_degree_neighbors += graph[i]
return len(set(q2_second_degree_neighbors))
def second_degree_intersection(row):
q1_neighbors = graph[row["question1"]]
q2_neighbors = graph[row["question2"]]
q1_second_degree_neighbors = []
for i in q1_neighbors:
q1_second_degree_neighbors += graph[i]
q2_second_degree_neighbors = []
for i in q2_neighbors:
q2_second_degree_neighbors += graph[i]
common_second_degree_neighbors = set(q1_second_degree_neighbors).intersection(set(q2_second_degree_neighbors))
return len(common_second_degree_neighbors)
# def pos_neighbor_intersection(row):
# if row["question1"] in pos_graph and row["question2"] in pos_graph:
# q1_neighbors = pos_graph[row["question1"]]
# q2_neighbors = pos_graph[row["question2"]]
# common_neighbors = set(q1_neighbors).intersection(q2_neighbors)
# return len(common_neighbors)/(len(q1_neighbors) + len(q2_neighbors) - len(common_neighbors))
# else:
# return 0
def get_word_bigrams(words):
ngrams = []
for i in range(0, len(words)):
if i > 0:
ngrams.append("%s %s"%(words[i-1], words[i]))
return ngrams
def generate_hash_freq(row):
hash_key1 = hash(row["question1"].lower())
hash_key2 = hash(row["question2"].lower())
if hash_key1 not in hash_table:
hash_table[hash_key1] = 1
else:
hash_table[hash_key1] += 1
if hash_key2 not in hash_table:
hash_table[hash_key2] = 1
else:
hash_table[hash_key2] += 1
def generate_duplicate_freq(row):
hash_key1 = hash(row["question1"].lower())
hash_key2 = hash(row["question2"].lower())
if hash_key1 not in pos_hash_table and row["is_duplicate"] == 1:
pos_hash_table[hash_key1] = 1
elif hash_key1 not in pos_hash_table and row["is_duplicate"] == 0:
pos_hash_table[hash_key1] = 0
elif hash_key1 in pos_hash_table and row["is_duplicate"] == 1:
pos_hash_table[hash_key1] += 1
# elif hash_key1 in pos_hash_table and row["is_duplicate"] == 0:
# pass
if hash_key2 not in pos_hash_table and row["is_duplicate"] == 1:
pos_hash_table[hash_key2] = 1
elif hash_key2 not in pos_hash_table and row["is_duplicate"] == 0:
pos_hash_table[hash_key2] = 0
elif hash_key2 in pos_hash_table and row["is_duplicate"] == 1:
pos_hash_table[hash_key2] += 1
# elif hash_key1 in pos_hash_table and row["is_duplicate"] == 0:
# pass
def generate_positive_graph(row):
hash_key1 = row["question1"]
hash_key2 = row["question2"]
if row["is_duplicate"] == 1:
if hash_key1 not in pos_graph:
pos_graph[hash_key1] = [hash_key2]
elif hash_key1 in pos_graph:
pos_graph[hash_key1].append(hash_key2)
if hash_key2 not in pos_graph:
pos_graph[hash_key2] = [hash_key1]
elif hash_key2 in pos_graph:
pos_graph[hash_key2].append(hash_key1)
def generate_graph_table(row):
hash_key1 = row["question1"]
hash_key2 = row["question2"]
if hash_key1 not in graph:
graph[hash_key1] = [hash_key2]
elif hash_key1 in graph:
graph[hash_key1].append(hash_key2)
if hash_key2 not in graph:
graph[hash_key2] = [hash_key1]
elif hash_key2 in graph:
graph[hash_key2].append(hash_key1)
def augment_rows():
new_graph = graph
for q1 in graph:
q2_list = graph[q1]
for i in q2_list:
for j in q2_list:
if i != j:
if j not in graph[i]:
new_graph[i].append(j)
# new_df_train = df_train[["question1", "question2", "is_duplicate"]]
# for i in new_graph:
def generate_ne_freq(row):
q1 = nlp(unicode(str(row["question1"]), "utf-8"))
q2 = nlp(unicode(str(row["question2"]), "utf-8"))
q1_ne = q1.ents
q2_ne = q2.ents
q1_ne = "-".join(set([str(i).lower() for i in q1_ne]))
q2_ne = "-".join(set([str(i).lower() for i in q2_ne]))
hash_key1 = hash(q1_ne)
hash_key2 = hash(q2_ne)
if hash_key1 not in hash_table_ne:
hash_table_ne[hash_key1] = 1
else:
hash_table_ne[hash_key1] += 1
if hash_key2 not in hash_table_ne:
hash_table_ne[hash_key2] = 1
else:
hash_table_ne[hash_key2] += 1
def oversample(x_train):
neg_train = x_train[x_train.is_duplicate == 0]
pos_train = x_train[x_train.is_duplicate == 1]
#Oversampling negative class
p = 0.165
scale = ((len(pos_train) / (len(pos_train) + len(neg_train))) / p) - 1 #How much times greater is the train ratio than actual
while scale > 1:
neg_train = pd.concat([neg_train, neg_train])
scale -=1
neg_train = pd.concat([neg_train, neg_train[:int(scale * len(neg_train))]])
return pd.concat([pos_train, neg_train])
#When plotted a histogram of degrees, only -1,1 and 2 are observed. Which means either you're max 2 degree separated or you're separate(with 5 as a cutoff).
#Add (number of second degree connections) and its intersection as a feature
def bfs(q_node, q_search, separation):
if separation > 5:
return -1
if len(graph[q_node]) > 0:
shortest_res = 32768
if q_search in graph[q_node]:
return separation
else:
for i,j in enumerate(graph[q_node]):
if i > 5:
return shortest_res
bfs_res = bfs(j, q_search, separation + 1)
if bfs_res != -1 and bfs_res < shortest_res:
shortest_res = bfs_res
return shortest_res
else:
return -1
def initialize_bfs(row):
q1 = row["question1"]
q2 = row["question2"]
shortest_res = 32768
for i in graph[q1]:
if i != q2:
res = bfs(i, q2, 1)
if res != -1 and res < shortest_res:
shortest_res = res
if shortest_res == 32768:
return -1
else:
return shortest_res
def augment_test(row):
global new_df_test
#map q1 with dups of q2
if row["question2"] in pos_graph:
new_rows = pd.DataFrame()
q2_dups = pos_graph[row["question2"]]
new_rows["question2"] = [i for i in q2_dups]
new_rows["question1"] = row["question1"]
new_rows["test_id"] = row["test_id"]
new_df_test = pd.concat([new_df_test, new_rows])
#map q2 with dups of q1
if row["question1"] in pos_graph:
new_rows = pd.DataFrame()
q1_dups = pos_graph[row["question1"]]
new_rows["question1"] = [i for i in q1_dups]
new_rows["question2"] = row["question2"]
new_rows["test_id"] = row["test_id"]
new_df_test = pd.concat([new_df_test, new_rows])
# def run_xgb(x_train, x_valid, y_train, y_valid):
def run_xgb(x_train, x_test, x_label):
# x_train = pd.concat([pos_train, neg_train]) #Concat positive and negative
# y_train = (np.zeros(len(pos_train)) + 1).tolist() + np.zeros(len(neg_train)).tolist() #Putting in 1 and 0
# x_train, x_valid, y_train, y_valid = train_test_split(x_train, y_train, test_size=0.2, random_state=4242)
# Set our parameters for xgboost
params = {}
params['objective'] = 'binary:logistic'
params['eval_metric'] = 'logloss'
params['eta'] = 0.05
params['max_depth'] = 6
params['silent'] = 1
d_train = xgb.DMatrix(x_train, label=x_label)
d_test = xgb.DMatrix(x_test)
watchlist = [(d_train, 'train')]
bst = xgb.train(params, d_train, 100, watchlist, early_stopping_rounds=50, verbose_eval=50)
p_test = bst.predict(d_test)
# xgb.plot_importance(bst)
# pyplot.show()
return p_test
def run_tsne(pos_train, neg_train, x_test_feat):
x_train = pd.concat([pos_train, neg_train]) #Concat positive and negative
y_train = (np.zeros(len(pos_train)) + 1).tolist() + np.zeros(len(neg_train)).tolist() #Putting in 1 and 0
x_train, x_valid, y_train, y_valid = train_test_split(x_train, y_train, test_size=0.2, random_state=4242)
df_subsampled = x_train[0:3000]
X = MinMaxScaler().fit_transform(df_subsampled[['z_len1', 'z_len2', 'z_words1', 'z_words2', 'word_match']])
# y = y_train['is_duplicate'].values
tsne = TSNE(
n_components=3,
init='random', # pca
random_state=101,
method='barnes_hut',
n_iter=200,
verbose=2,
angle=0.5
).fit_transform(X)
trace1 = go.Scatter3d(
x=tsne[:,0],
y=tsne[:,1],
z=tsne[:,2],
mode='markers',
marker=dict(
sizemode='diameter',
color = y_train,
colorscale = 'Portland',
colorbar = dict(title = 'duplicate'),
line=dict(color='rgb(255, 255, 255)'),
opacity=0.75
)
)
data=[trace1]
layout=dict(height=800, width=800, title='3d embedding with engineered features')
fig=dict(data=data, layout=layout)
py.plot(data, filename='3d_bubble')
def validate(training):
training_res = training.pop("is_duplicate")
x_train, x_valid, y_train, y_valid = train_test_split(training, training_res, test_size=0.2, random_state=4242, stratify = training_res)
return(x_train, x_valid, y_train, y_valid)
def real_testing(df_with_qs, gen_filename):
# Required for initial setup!
# dataframe_modified = df_with_qs.progress_apply(basic_nlp, axis = 1)
old_filename = './old/' + gen_filename
# dataframe_modified.to_csv(old_filename, index = False)
dataframe_modified = pd.read_csv(old_filename).fillna("")
dataframe_modified["neighbor_intersection"] = df_with_qs.apply(neighbor_intersection, axis = 1)
# q1_second_degree_freq = dataframe.apply(get_q1_second_degree_freq, axis = 1)
# q2_second_degree_freq = dataframe.apply(get_q2_second_degree_freq, axis = 1)
# dataframe_modified["second_degree_avg"] = (q1_second_degree_freq + q2_second_degree_freq)/2
# dataframe_modified["second_degree_diff"] = abs(q1_second_degree_freq - q2_second_degree_freq)
# dataframe_modified["second_degree_intersection"] = dataframe.apply(second_degree_intersection, axis = 1)
# dataframe_modified["separation"] = dataframe.progress_apply(initialize_bfs, axis = 1)
new_filename = "./new/" + gen_filename
dataframe_modified.to_csv(new_filename, index=False)
# %reset_selective dataframe_modified
def pred_n_submit(x_train, x_label, test_filename, test_id_df, res_filename):
x_test = pd.read_csv(test_filename).fillna("")
res_1 = run_xgb(x_train, x_test, x_label)
sub = pd.DataFrame()
sub['test_id'] = test_id_df['test_id']
sub['is_duplicate'] = res_1
sub.to_csv(res_filename, index=False)
# %reset_selective -f x_test_1
if __name__ == '__main__':
df_train = pd.read_csv('./train.csv').fillna("")
df_test = pd.read_csv('./test.csv').fillna("")
train_qs = pd.Series(df_train['question1'].tolist() + df_train['question2'].tolist()).astype(str)
test_qs = pd.Series(df_test['question1'].tolist() + df_test['question2'].tolist()).astype(str)
qs = pd.concat([train_qs, test_qs])
# tfidf = TfidfVectorizer(max_features = 256, stop_words='english', ngram_range=(1, 1))
# tfidf.fit_transform(train_qs[0:2500])
#Load up the Weights Dictionary
# words = (" ".join(qs)).lower().split()
# counts = Counter(words)
# weights = {word: get_inverse_freq(1/(10000 + int(count)), count) for word, count in counts.items()}
# with open('word_weights.pickle', 'wb') as handle:
# pickle.dump(weights, handle)
with open('word_weights.pickle', 'rb') as handle:
weights = pickle.load(handle)
stops = set(stopwords.words("english"))
#Load up the hashtable
# hash_table = {}
# df_train.apply(generate_hash_freq, axis = 1)
# df_test.apply(generate_hash_freq, axis = 1)
# with open('hash_table.pickle', 'wb') as handle:
# pickle.dump(hash_table, handle)
with open('hash_table.pickle', 'rb') as handle:
hash_table = pickle.load(handle)
# pos_hash_table = {}
# df_train.apply(generate_duplicate_freq, axis = 1)
# with open('pos_hash_table.pickle', 'wb') as handle:
# pickle.dump(pos_hash_table, handle)
# with open('pos_hash_table.pickle', 'rb') as handle:
# pos_hash_table = pickle.load(handle)
# hash_table_ne = {}
# df_train.apply(generate_ne_freq, axis = 1)
# df_test.apply(generate_ne_freq, axis = 1)
# with open('hash_table_ne.pickle', 'wb') as handle:
# pickle.dump(hash_table_ne, handle)
# with open('hash_table_ne.pickle', 'rb') as handle:
# hash_table_ne = pickle.load(handle)
#Load up the graph!
# graph = {}
# df_train.apply(generate_graph_table, axis = 1)
# df_test.progress_apply(generate_graph_table, axis = 1)
# with open('graph.pickle', 'wb') as handle:
# pickle.dump(graph, handle)
with open('graph.pickle', 'rb') as handle:
graph = pickle.load(handle)
# pos_graph = {}
# df_train.apply(generate_positive_graph, axis = 1)
# with open('pos_graph.pickle', 'wb') as handle:
# pickle.dump(pos_graph, handle)
# with open('pos_graph.pickle', 'rb') as handle:
# pos_graph = pickle.load(handle)
#Augment Test Data
# new_df_test = df_test
# df_test.apply(augment_test, axis = 1)
#Validation
# x_train, x_test, y_train, y_valid = validate(df_train)
# x_train_feat = x_train.apply(basic_nlp, axis = 1)
# x_test_feat = x_test.apply(basic_nlp, axis = 1)
# res = run_xgb(x_train_feat, x_test_feat, y_train, y_valid)
real_testing(df_train, 'x_train.csv')
real_testing(df_test[0:390000], 'x_test_1.csv')
real_testing(df_test[390000:780000], 'x_test_2.csv')
real_testing(df_test[780000:1170000], 'x_test_3.csv')
real_testing(df_test[1170000:1560000], 'x_test_4.csv')
real_testing(df_test[1560000:1950000], 'x_test_5.csv')
real_testing(df_test[1950000:], 'x_test_6.csv')
#Finally!
x_train = pd.read_csv('./new/x_train.csv').fillna("")
x_label = df_train.is_duplicate
oversample_label = 0
if oversample_label == 1:
x_train["is_duplicate"] = df_train.is_duplicate
x_train = oversample(x_train)
x_label = x_train.pop("is_duplicate")
# res_oversampled = run_xgb(x_train_oversampled, x_test, x_label_oversampled)
# submit(res_oversampled)
pred_n_submit(x_train, x_label, './new/x_test_1.csv', df_test[0:390000], './res_files/res_1.csv')
pred_n_submit(x_train, x_label, './new/x_test_2.csv', df_test[390000:780000], './res_files/res_2.csv')
pred_n_submit(x_train, x_label, './new/x_test_3.csv', df_test[780000:1170000], './res_files/res_3.csv')
pred_n_submit(x_train, x_label, './new/x_test_4.csv', df_test[1170000:1560000], './res_files/res_4.csv')
pred_n_submit(x_train, x_label, './new/x_test_5.csv', df_test[1560000:1950000], './res_files/res_5.csv')
pred_n_submit(x_train, x_label, './new/x_test_6.csv', df_test[1950000:], './res_files/res_6.csv')
res_1 = pd.read_csv('./res_files/res_1.csv').fillna("")
res_2 = pd.read_csv('./res_files/res_2.csv').fillna("")
res_3 = pd.read_csv('./res_files/res_3.csv').fillna("")
res_4 = pd.read_csv('./res_files/res_4.csv').fillna("")
res_5 = pd.read_csv('./res_files/res_5.csv').fillna("")
res_6 = pd.read_csv('./res_files/res_6.csv').fillna("")
res = pd.concat([res_1, res_2, res_3, res_4, res_5, res_6])
res.to_csv("jus_tryin.csv", index = False)
#After submitting paste files in ./new to ./old -- Building upon the already generated features