-
Notifications
You must be signed in to change notification settings - Fork 0
/
Hand_written_digit.py
38 lines (28 loc) · 1.11 KB
/
Hand_written_digit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# IMORTING TENSOR-FLOW
import tensorflow as tf
# IMPORTING MNIST DATASET FROM KERAS DATASET
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
# FEATURE SCALINNG
x_train=x_train/255.0
x_test=x_test/255.0
# CREATING FUNCTION TO STOP TRAINING WHEN 99% OF ACCURACY IS ACHIEVED
class myCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self, epoch, logs={}):
if(logs.get('accuracy')>0.99):
print("\nReached 99% accuracy so cancelling training!")
self.model.stop_training = True
#CREATING 'CALLBACK' OBJECT
callbacks = myCallback()
# CREATING THE MODEL WITH TWO LAYERS IN WHICH HIDDEN LAYER HAS 512 NEURONS AND OUTPUT LAYER HAS 10 NEURONS
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
# COMPILING THE MODEL
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# TRAINING THE MODEL
model.fit(x_train, y_train, epochs=10,callbacks=[callbacks])