-
Notifications
You must be signed in to change notification settings - Fork 0
/
sam_predictor.py
237 lines (193 loc) · 10.1 KB
/
sam_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
import logging
import torch
import cv2
import numpy as np
from pathlib import Path
from typing import List, Dict, Optional
from label_studio_ml.utils import get_image_local_path, InMemoryLRUDictCache
logger = logging.getLogger(__name__)
VITH_CHECKPOINT = os.environ.get("VITB_CHECKPOINT", "sam_vit_b_01ec64.pth")
ONNX_CHECKPOINT = os.environ.get("ONNX_CHECKPOINT", "sam_onnx_quantized_example.onnx")
MOBILESAM_CHECKPOINT = os.environ.get("MOBILESAM_CHECKPOINT", "mobile_sam.pt")
LABEL_STUDIO_ACCESS_TOKEN = os.environ.get("LABEL_STUDIO_ACCESS_TOKEN")
LABEL_STUDIO_HOST = os.environ.get("LABEL_STUDIO_HOST")
class SAMPredictor(object):
def __init__(self, model_choice):
self.model_choice = model_choice
# cache for embeddings
# TODO: currently it supports only one image in cache,
# since predictor.set_image() should be called each time the new image comes
# before making predictions
# to extend it to >1 image, we need to store the "active image" state in the cache
self.cache = InMemoryLRUDictCache(1)
# if you're not using CUDA, use "cpu" instead .... good luck not burning your computer lol
self.device = "cuda" if torch.cuda.is_available() else "cpu"
logger.debug(f"Using device {self.device}")
if model_choice == 'ONNX':
import onnxruntime
from segment_anything import sam_model_registry, SamPredictor
self.model_checkpoint = VITH_CHECKPOINT
if self.model_checkpoint is None:
raise FileNotFoundError("VITH_CHECKPOINT is not set: please set it to the path to the SAM checkpoint")
if ONNX_CHECKPOINT is None:
raise FileNotFoundError("ONNX_CHECKPOINT is not set: please set it to the path to the ONNX checkpoint")
logger.info(f"Using ONNX checkpoint {ONNX_CHECKPOINT} and SAM checkpoint {self.model_checkpoint}")
self.ort = onnxruntime.InferenceSession(ONNX_CHECKPOINT)
reg_key = "vit_h"
elif model_choice == 'SAM':
from segment_anything import SamPredictor, sam_model_registry
self.model_checkpoint = VITH_CHECKPOINT
if self.model_checkpoint is None:
raise FileNotFoundError("VITH_CHECKPOINT is not set: please set it to the path to the SAM checkpoint")
logger.info(f"Using SAM checkpoint {self.model_checkpoint}")
reg_key = "vit_b"
elif model_choice == 'MobileSAM':
from mobile_sam import SamPredictor, sam_model_registry
self.model_checkpoint = MOBILESAM_CHECKPOINT
if not self.model_checkpoint:
raise FileNotFoundError("MOBILE_CHECKPOINT is not set: please set it to the path to the MobileSAM checkpoint")
logger.info(f"Using MobileSAM checkpoint {self.model_checkpoint}")
reg_key = 'vit_t'
else:
raise ValueError(f"Invalid model choice {model_choice}")
sam = sam_model_registry[reg_key](checkpoint=self.model_checkpoint)
sam.to(device=self.device)
self.predictor = SamPredictor(sam)
@property
def model_name(self):
return f'{self.model_choice}:{self.model_checkpoint}:{self.device}'
def set_image(self, img_path, calculate_embeddings=True):
payload = self.cache.get(img_path)
if payload is None:
# Get image and embeddings
logger.debug(f'Payload not found for {img_path} in `IN_MEM_CACHE`: calculating from scratch')
#image_path = get_image_local_path(
# img_path,
# label_studio_access_token=LABEL_STUDIO_ACCESS_TOKEN,
# label_studio_host=LABEL_STUDIO_HOST
#)
print("*********************************")
print("image path is ", img_path)
img_path_parts = img_path.split('upload')
if len(img_path_parts) < 2:
print("Error: 'upload' directory not found in the given path.")
exit()
img_path_new = img_path_parts[-1]
print("New path is ", img_path_new)
current_directory_path = Path.cwd()
print("Current is ", current_directory_path)
label_studio_index = str(current_directory_path).find('label_studio')
if label_studio_index != -1:
result_path = str(current_directory_path)[:label_studio_index + len('label_studio')]
print("Result path is *****************************", result_path)
full_paths = Path(result_path) / 'core' / 'metaDeta' / 'media' / 'upload'
print("Full Paths:", full_paths)
full_path = full_paths / img_path_new.lstrip('/')
print("Full Path:", full_path)
if full_path.exists():
print("Updated *********************************************")
else:
print("Error: The full path does not exist.")
else:
print("Subpath 'label_studio' not found in the given path.")
#full_path = full_paths.joinpath(img_paths_updated.relative_to('/'))
#print("Resulting full_path:", full_path)
full_path_str = str(full_path)
image = cv2.imread(full_path_str)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
self.predictor.set_image(image)
payload = {'image_shape': image.shape[:2]}
logger.debug(f'Finished set_image({img_path}) in `IN_MEM_CACHE`: image shape {image.shape[:2]}')
if calculate_embeddings:
image_embedding = self.predictor.get_image_embedding().cpu().numpy()
payload['image_embedding'] = image_embedding
logger.debug(f'Finished storing embeddings for {img_path} in `IN_MEM_CACHE`: '
f'embedding shape {image_embedding.shape}')
self.cache.put(img_path, payload)
else:
logger.debug(f"Using embeddings for {img_path} from `IN_MEM_CACHE`")
return payload
def predict_onnx(
self,
img_path,
point_coords: Optional[List[List]] = None,
point_labels: Optional[List] = None,
input_box: Optional[List] = None
):
# calculate embeddings
payload = self.set_image(img_path, calculate_embeddings=True)
image_shape = payload['image_shape']
image_embedding = payload['image_embedding']
onnx_point_coords = np.array(point_coords, dtype=np.float32) if point_coords else None
onnx_point_labels = np.array(point_labels, dtype=np.float32) if point_labels else None
onnx_box_coords = np.array(input_box, dtype=np.float32).reshape(2, 2) if input_box else None
onnx_coords, onnx_labels = None, None
if onnx_point_coords is not None and onnx_box_coords is not None:
# both keypoints and boxes are present
onnx_coords = np.concatenate([onnx_point_coords, onnx_box_coords], axis=0)[None, :, :]
onnx_labels = np.concatenate([onnx_point_labels, np.array([2, 3])], axis=0)[None, :].astype(np.float32)
elif onnx_point_coords is not None:
# only keypoints are present
onnx_coords = np.concatenate([onnx_point_coords, np.array([[0.0, 0.0]])], axis=0)[None, :, :]
onnx_labels = np.concatenate([onnx_point_labels, np.array([-1])], axis=0)[None, :].astype(np.float32)
elif onnx_box_coords is not None:
# only boxes are present
raise NotImplementedError("Boxes without keypoints are not supported yet")
onnx_coords = self.predictor.transform.apply_coords(onnx_coords, image_shape).astype(np.float32)
# TODO: support mask inputs
onnx_mask_input = np.zeros((1, 1, 256, 256), dtype=np.float32)
onnx_has_mask_input = np.zeros(1, dtype=np.float32)
ort_inputs = {
"image_embeddings": image_embedding,
"point_coords": onnx_coords,
"point_labels": onnx_labels,
"mask_input": onnx_mask_input,
"has_mask_input": onnx_has_mask_input,
"orig_im_size": np.array(image_shape, dtype=np.float32)
}
masks, prob, low_res_logits = self.ort.run(None, ort_inputs)
masks = masks > self.predictor.model.mask_threshold
mask = masks[0, 0, :, :].astype(np.uint8) # each mask has shape [H, W]
prob = float(prob[0][0])
# TODO: support the real multimask output as in https://github.com/facebookresearch/segment-anything/blob/main/notebooks/predictor_example.ipynb
return {
'masks': [mask],
'probs': [prob]
}
def predict_sam(
self,
img_path,
point_coords: Optional[List[List]] = None,
point_labels: Optional[List] = None,
input_box: Optional[List] = None
):
self.set_image(img_path, calculate_embeddings=False)
point_coords = np.array(point_coords, dtype=np.float32) if point_coords else None
point_labels = np.array(point_labels, dtype=np.float32) if point_labels else None
input_box = np.array(input_box, dtype=np.float32) if input_box else None
masks, probs, logits = self.predictor.predict(
point_coords=point_coords,
point_labels=point_labels,
box=input_box,
# TODO: support multimask output
multimask_output=False
)
mask = masks[0, :, :].astype(np.uint8) # each mask has shape [H, W]
prob = float(probs[0])
return {
'masks': [mask],
'probs': [prob]
}
def predict(
self, img_path: str,
point_coords: Optional[List[List]] = None,
point_labels: Optional[List] = None,
input_box: Optional[List] = None
):
if self.model_choice == 'ONNX':
return self.predict_onnx(img_path, point_coords, point_labels, input_box)
elif self.model_choice in ('SAM', 'MobileSAM'):
return self.predict_sam(img_path, point_coords, point_labels, input_box)
else:
raise NotImplementedError(f"Model choice {self.model_choice} is not supported yet")