-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparse.py
113 lines (99 loc) · 4.89 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from preprocess import conll_indice_mapping_without_padding
import torch
from torch import cuda
# from torch.autograd import Variable
import utils
import argparse
import dill
import logging
import os
import pdb
logging.basicConfig(
format='%(asctime)s %(levelname)s: %(message)s',
datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG)
opt_parser =\
argparse.ArgumentParser(description="Reimplementation of\n" +
"Dyer et al. 2015\n" +
"Transition-Based Dependency Parsing with Stack Long Short-Term Memory.\n" +
"This is the inference code.")
# io & system
opt_parser.add_argument("--input_file", required=True,
help="Input to the parser.")
opt_parser.add_argument("--model_file", required=True,
help="Parser model dump.")
opt_parser.add_argument("--data_file", required=True,
help="Data dump from preprocessing script -- only .dict and .pre are used.")
opt_parser.add_argument("--output_file", required=True,
help="Output parse file.")
opt_parser.add_argument("--pre_emb_file", default=None,
help="Preprocessed pre-trained word embedding vocabulary file.")
opt_parser.add_argument("--batch_size", default=80, type=int,
help="Size of the test batch. (default=80)")
opt_parser.add_argument("--gpuid", default=[], nargs='+', type=int,
help="ID of gpu device to use. Empty implies cpu usage.")
# parser model definition
opt_parser.add_argument("--max_step_length", default=150, type=int,
help="Maximum step length allowed for decoding. (default=150)")
opt_parser.add_argument("--stack_size", default=25, type=int,
help="Stack size reserved for the stack LSTM components. (default=25)")
def main(options):
use_cuda = (len(options.gpuid) >= 1)
if options.gpuid:
cuda.set_device(options.gpuid[0])
vocab, postags, actions = torch.load(open(options.data_file + ".dict", 'rb'), pickle_module=dill) # always load to cpu
use_pretrained_emb = os.path.isfile(options.data_file + ".pre")
if use_pretrained_emb:
_, _, pre_vocab = torch.load(open(options.data_file + ".pre", 'rb'), pickle_module=dill)
else:
pre_vocab = None
postag2idx = dict((pair[1], pair[0]) for pair in enumerate(postags))
test_data, test_postag = conll_indice_mapping_without_padding(options.input_file, vocab, postag2idx)
if use_pretrained_emb:
test_data_pre, _ = conll_indice_mapping_without_padding(options.input_file, pre_vocab, postag2idx)
batchized_test_data, batchized_test_data_mask = utils.tensor.advanced_batchize_no_sort(test_data, options.batch_size, vocab.stoi["<pad>"])
batchized_test_postag, _ = utils.tensor.advanced_batchize_no_sort(test_postag, options.batch_size, postags.index("<pad>"))
if use_pretrained_emb:
batchized_test_data_pre, _ = utils.tensor.advanced_batchize_no_sort(test_data_pre, options.batch_size, pre_vocab.stoi["<pad>"])
parser = torch.load(open(options.model_file, 'rb'), map_location=lambda storage, loc: storage)
parser.max_step_length = options.max_step_length
parser.stack_size = options.stack_size
parser.gpuid = options.gpuid
if use_cuda:
parser = parser.cuda()
parser.stack_action_mapping = parser.stack_action_mapping.cuda()
parser.buffer_action_mapping = parser.buffer_action_mapping.cuda()
else:
parser = parser.cpu()
parser.dtype = torch.FloatTensor
parser.long_dtype = torch.LongTensor
pad_idx = actions.index("<pad>")
total_sent_n = len(test_data)
writer = utils.io.OracleWriter(open(options.output_file, 'w'), actions, pad_idx, total_sent_n)
for batch_i in range(len(batchized_test_data)):
logging.debug("{0} batch updates calculated.".format(batch_i))
test_data_batch = batchized_test_data[batch_i]
test_data_mask_batch = batchized_test_data_mask[batch_i]
test_postag_batch = batchized_test_postag[batch_i]
if use_pretrained_emb:
test_data_pre_batch = batchized_test_data_pre[batch_i]
else:
test_data_pre_batch = None
if use_cuda:
test_data_batch = test_data_batch.cuda()
test_data_mask_batch = test_data_mask_batch.cuda()
test_postag_batch = test_postag_batch.cuda()
if use_pretrained_emb:
test_data_pre_batch = test_data_pre_batch.cuda()
output_batch = parser(test_data_batch, test_data_mask_batch, pre_tokens=test_data_pre_batch, postags=test_postag_batch) # (max_seq_len, batch_size, len(actions))
_, output_actions = output_batch.max(dim=2) # (max_seq_len, batch_size)
writer.writesent(output_actions)
writer.close()
if __name__ == "__main__":
ret = opt_parser.parse_known_args()
options = ret[0]
if ret[1]:
logging.warning(
"unknown arguments: {0}".format(
opt_parser.parse_known_args()[1]))
# several options that are pending:
main(options)