layout | background-class | body-class | category | title | summary | image | author | tags | github-link | github-id | featured_image_1 | featured_image_2 | accelerator | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
hub_detail |
hub-background |
hub |
researchers |
ntsnet |
classify birds using this fine-grained image classifier |
Cub200Dataset.png |
Moreno Caraffini and Nicola Landro |
|
nicolalandro/ntsnet-cub200 |
nts-net.png |
no-image |
cuda-optional |
import torch
model = torch.hub.load('nicolalandro/ntsnet-cub200', 'ntsnet', pretrained=True,
**{'topN': 6, 'device':'cpu', 'num_classes': 200})
from torchvision import transforms
import torch
import urllib
from PIL import Image
transform_test = transforms.Compose([
transforms.Resize((600, 600), Image.BILINEAR),
transforms.CenterCrop((448, 448)),
# transforms.RandomHorizontalFlip(), # only if train
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
model = torch.hub.load('nicolalandro/ntsnet-cub200', 'ntsnet', pretrained=True, **{'topN': 6, 'device':'cpu', 'num_classes': 200})
model.eval()
url = 'https://raw.githubusercontent.com/nicolalandro/ntsnet-cub200/master/images/nts-net.png'
img = Image.open(urllib.request.urlopen(url))
scaled_img = transform_test(img)
torch_images = scaled_img.unsqueeze(0)
with torch.no_grad():
top_n_coordinates, concat_out, raw_logits, concat_logits, part_logits, top_n_index, top_n_prob = model(torch_images)
_, predict = torch.max(concat_logits, 1)
pred_id = predict.item()
print('bird class:', model.bird_classes[pred_id])
This is an nts-net pretrained with CUB200 2011 dataset, which is a fine grained dataset of birds species.
You can read the full paper at this link.
@INPROCEEDINGS{Gallo:2019:IVCNZ,
author={Nawaz, Shah and Calefati, Alessandro and Caraffini, Moreno and Landro, Nicola and Gallo, Ignazio},
booktitle={2019 International Conference on Image and Vision Computing New Zealand (IVCNZ 2019)},
title={Are These Birds Similar: Learning Branched Networks for Fine-grained Representations},
year={2019},
month={Dec},
}