1
1
from .preprocess import cat , get , regen , constant , Classification , TokenClassification , MultipleChoice
2
2
from .metadata import bigbench_discriminative_english , blimp_hard , imppres_presupposition , imppres_implicature
3
- from datasets import get_dataset_config_names , ClassLabel
4
-
3
+ from datasets import get_dataset_config_names , ClassLabel , Dataset , DatasetDict
5
4
# variable name: dataset___config__task
6
5
7
6
###################### NLI/paraphrase ###############################
@@ -649,12 +648,12 @@ def _split_choices(s):
649
648
dataset_name = "lucasmccabe/logiqa"
650
649
)
651
650
652
- proto_qa = MultipleChoice (
653
- "question" ,
654
- choices_list = lambda x :x ['answer-clusters' ]['answers' ],
655
- labels = lambda x : x ['answer-clusters' ]['count' ].index (max (x ['answer-clusters' ]['count' ])),
656
- config_name = 'proto_qa'
657
- )
651
+ # proto_qa = MultipleChoice(
652
+ # "question",
653
+ # choices_list=lambda x:x['answer-clusters']['answers'],
654
+ # labels=lambda x: x['answer-clusters']['count'].index(max(x['answer-clusters']['count'])),
655
+ # config_name='proto_qa'
656
+ # )
658
657
659
658
wiki_qa = Classification ("question" ,"answer" ,"label" )
660
659
@@ -705,4 +704,15 @@ def _preprocess_chatgpt_detection(ex):
705
704
706
705
moral_stories = MultipleChoice (cat (["situation" ,"intention" ]),
707
706
choices = ['moral_action' ,"immoral_action" ],labels = constant (0 ),
708
- dataset_name = "demelin/moral_stories" , config_name = "full" )
707
+ dataset_name = "demelin/moral_stories" , config_name = "full" )
708
+
709
+ prost = MultipleChoice (cat (["context" ,"ex_question" ]), choices = ['A' ,'B' ,'C' ,'D' ],labels = "label" ,
710
+ dataset_name = "corypaik/prost" )
711
+
712
+ dyna_hate = Classification ("text" ,labels = "label" ,dataset_name = "aps/dynahate" ,splits = ['train' ,None ,None ])
713
+
714
+ syntactic_augmentation_nli = Classification ('sentence1' ,"sentence2" ,"gold_label" ,dataset_name = "metaeval/syntactic-augmentation-nli" )
715
+
716
+
717
+ #autotnli = Classification("premises", "hypothesis", "label", dataset_name="metaeval/autotnli")
718
+ #equate = Classification("sentence1", "sentence2", "gold_label",dataset_name="metaeval/equate")
0 commit comments