18
18
) # agents-motivations task is not as clear-cut as the others
19
19
20
20
21
- ling_nli = Classification ("premise" ,"hypothesis" ,"label" ,dataset_name = "metaeval/lingnli" )
22
-
23
-
24
21
sick__label = Classification ('sentence_A' ,'sentence_B' ,'label' )
25
22
sick__relatedness = Classification ('sentence_A' ,'sentence_B' ,'relatedness_score' )
26
23
sick__entailment_AB = Classification ('sentence_A' ,'sentence_B' ,'entailment_AB' )
@@ -583,13 +580,14 @@ def _split_choices(s):
583
580
sentence2 = "answer-Y" ,
584
581
labels = "goldstandard2" )
585
582
586
- code_x_glue_cc_defect_detection = Classification ("func" , labels = "target" )
583
+ # code_x_glue_cc_defect_detection = Classification("func", labels="target")
587
584
588
585
#code_x_glue_cc_clone_detection_big_clone_bench = Classification("func1", "func2", "label") # in bigbench + too heavy (100g)
589
586
590
- code_x_glue_cc_code_refinement = MultipleChoice (
591
- constant ("" ), choices = ["buggy" ,"fixed" ], labels = constant (0 ),
592
- config_name = "medium" )
587
+ #code_x_glue_cc_code_refinement = MultipleChoice(
588
+ # constant(""), choices=["buggy","fixed"], labels=constant(0),
589
+ # config_name="medium")
590
+
593
591
effective_feedback_student_writing = Classification ("discourse_text" , labels = "discourse_effectiveness" ,dataset_name = "YaHi/EffectiveFeedbackStudentWriting" )
594
592
595
593
promptSentiment = Classification ("text" ,labels = "label" ,dataset_name = "Ericwang/promptSentiment" )
@@ -668,7 +666,7 @@ def _split_choices(s):
668
666
669
667
def _preprocess_chatgpt_detection (ex ):
670
668
import random
671
- label = random .random ()<= 0.5
669
+ label = random .random ()< 0.5
672
670
ex ['label' ]= label
673
671
ex ['answer' ]= [ex ['human_answers' ],ex ['chatgpt_answers' ]][label ]
674
672
return ex
@@ -680,4 +678,14 @@ def _preprocess_chatgpt_detection(ex):
680
678
681
679
sts_companion = Classification ("sentence1" ,"sentence2" ,"label" ,
682
680
dataset_name = "metaeval/sts-companion"
681
+ )
682
+
683
+ commonsense_qa_2 = Classification ("question" ,labels = "answer" ,
684
+ dataset_name = "metaeval/commonsense_qa_2.0" )
685
+
686
+
687
+ ling_nli = Classification ("premise" ,"hypothesis" ,"label" ,dataset_name = "metaeval/lingnli" )
688
+
689
+ monotonicity_entailment = Classification ("sentence1" , "sentence2" , "gold_label" ,
690
+ dataset_name = "metaeval/monotonicity-entailment"
683
691
)
0 commit comments