5
5
6
6
###################### NLI/paraphrase ###############################
7
7
8
-
9
8
anli__a1 = Classification ('premise' ,'hypothesis' ,'label' , splits = ['train_r1' ,'dev_r1' ,'test_r1' ])
10
9
anli__a2 = Classification ('premise' ,'hypothesis' ,'label' , splits = ['train_r2' ,'dev_r2' ,'test_r2' ])
11
10
anli__a3 = Classification ('premise' ,'hypothesis' ,'label' , splits = ['train_r3' ,'dev_r3' ,'test_r3' ])
@@ -549,10 +548,10 @@ def _split_choices(s):
549
548
SpeedOfMagic_ontonotes_english = TokenClassification (tokens = "tokens" , labels = "ner_tags" , dataset_name = "SpeedOfMagic/ontonotes_english" , config_name = "SpeedOfMagic--ontonotes_english" )
550
549
551
550
552
- blog_authorship_corpus__gender = Classification (sentence1 = "text" ,labels = "gender" , splits = [ "train" , "validation" , None ] )
553
- blog_authorship_corpus__age = Classification (sentence1 = "text" ,labels = "age" , splits = [ "train" , "validation" , None ] )
554
- blog_authorship_corpus__horoscope = Classification (sentence1 = "text" ,labels = "horoscope" , splits = [ "train" , "validation" , None ] )
555
- blog_authorship_corpus__job = Classification (sentence1 = "text" ,labels = "job" , splits = [ "train" , "validation" , None ] )
551
+ blog_authorship_corpus__gender = Classification (sentence1 = "text" ,labels = "gender" )
552
+ blog_authorship_corpus__age = Classification (sentence1 = "text" ,labels = "age" )
553
+ blog_authorship_corpus__horoscope = Classification (sentence1 = "text" ,labels = "horoscope" )
554
+ blog_authorship_corpus__job = Classification (sentence1 = "text" ,labels = "job" )
556
555
557
556
launch_open_question_type = Classification (sentence1 = "question" , labels = "resolve_type" , dataset_name = "launch/open_question_type" )
558
557
@@ -714,7 +713,7 @@ def _preprocess_chatgpt_detection(ex):
714
713
syntactic_augmentation_nli = Classification ('sentence1' ,"sentence2" ,"gold_label" ,dataset_name = "metaeval/syntactic-augmentation-nli" )
715
714
716
715
717
- # autotnli = Classification("premises", "hypothesis", "label", dataset_name="metaeval/autotnli")
716
+ autotnli = Classification ("premises" , "hypothesis" , "label" , dataset_name = "metaeval/autotnli" )
718
717
#equate = Classification("sentence1", "sentence2", "gold_label",dataset_name="metaeval/equate")
719
718
720
719
conqada = Classification ("sentence1" ,"sentence2" ,"label" ,dataset_name = "lasha-nlp/CONDAQA" ,
@@ -765,4 +764,10 @@ def _preprocess_chatgpt_detection(ex):
765
764
#strategy_qa = Classification(lambda x:' '.join(x['facts']),'question','answer',
766
765
# dataset_name="metaeval/strategy-qa")
767
766
strategy_qa = Classification ('question' ,labels = 'answer' ,
768
- dataset_name = "metaeval/strategy-qa" ,splits = ['train' ,None ,None ])
767
+ dataset_name = "metaeval/strategy-qa" ,splits = ['train' ,None ,None ])
768
+
769
+ rlhf_summarization = MultipleChoice (get .info .post ,
770
+ choices_list = lambda x : [x ['summaries' ][0 ]['text' ],x ['summaries' ][1 ]['text' ]],
771
+ labels = "choice" ,
772
+ dataset_name = "openai/summarize_from_feedback" ,
773
+ config_name = "comparisons" )
0 commit comments