forked from james-bowman/nlp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdimreduction_test.go
175 lines (152 loc) · 3.44 KB
/
dimreduction_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
package nlp
import (
"bytes"
"testing"
"gonum.org/v1/gonum/mat"
)
func TestTruncatedSVDFitTransform(t *testing.T) {
var tests = []struct {
m int
n int
input []float64
k int
r int
c int
result []float64
}{
{
m: 6, n: 4,
input: []float64{
1, 3, 5, 2,
8, 1, 0, 0,
2, 1, 0, 1,
0, 0, 0, 0,
0, 0, 0, 1,
0, 1, 0, 0,
},
k: 2,
r: 2, c: 4,
result: []float64{
-8.090, -2.212, -1.695, -0.955,
1.888, -2.524, -4.649, -1.930,
},
},
}
for _, test := range tests {
transformer := NewTruncatedSVD(test.k)
input := mat.NewDense(test.m, test.n, test.input)
expResult := mat.NewDense(test.r, test.c, test.result)
result, err := transformer.FitTransform(input)
if err != nil {
t.Errorf("Failed Truncated SVD transform caused by %v", err)
}
if !mat.EqualApprox(expResult, result, 0.01) {
t.Logf("Expected matrix: \n%v\n but found: \n%v\n",
mat.Formatted(expResult),
mat.Formatted(result))
t.Fail()
}
result2, err := transformer.Transform(input)
if err != nil {
t.Errorf("Failed Truncated SVD transform caused by %v", err)
}
if !mat.EqualApprox(result, result2, 0.001) {
t.Logf("First matrix: \n%v\n but second matrix: \n%v\n",
mat.Formatted(result),
mat.Formatted(result2))
t.Fail()
}
}
}
func TestPCAFitTransform(t *testing.T) {
var tests = []struct {
m int
n int
input []float64
k int
r int
c int
result []float64
}{
{
m: 6, n: 4,
input: []float64{
1, 3, 5, 2,
8, 1, 0, 0,
2, 1, 0, 1,
0, 0, 0, 0,
0, 0, 0, 1,
0, 1, 0, 0,
},
k: 2,
r: 2, c: 4,
result: []float64{
-7.478, -0.128, 1.591, 0.496,
2.937, 2.581, 4.240, 1.110,
},
},
}
for _, test := range tests {
transformer := NewPCA(test.k)
input := mat.NewDense(test.m, test.n, test.input)
expResult := mat.NewDense(test.r, test.c, test.result)
result, err := transformer.FitTransform(input)
if err != nil {
t.Errorf("Failed Truncated SVD transform caused by %v", err)
}
if !mat.EqualApprox(expResult, result, 0.01) {
t.Logf("Expected matrix: \n%v\n but found: \n%v\n",
mat.Formatted(expResult),
mat.Formatted(result))
t.Fail()
}
result2, err := transformer.Transform(input)
if err != nil {
t.Errorf("Failed Truncated SVD transform caused by %v", err)
}
if !mat.EqualApprox(result, result2, 0.001) {
t.Logf("First matrix: \n%v\n but second matrix: \n%v\n",
mat.Formatted(result),
mat.Formatted(result2))
t.Fail()
}
}
}
func TestTruncatedSVDSaveLoad(t *testing.T) {
var transforms = []struct {
wanted *TruncatedSVD
}{
{
wanted: &TruncatedSVD{
Components: mat.NewDense(4, 2, []float64{
1, 5,
3, 2,
9, 0,
8, 4,
}),
K: 2,
},
},
}
for ti, test := range transforms {
t.Logf("**** TestTruncatedSVDSaveLoad - Test Run %d.\n", ti+1)
buf := new(bytes.Buffer)
if err := test.wanted.Save(buf); err != nil {
t.Errorf("Error encoding: %v\n", err)
continue
}
var b TruncatedSVD
if err := b.Load(buf); err != nil {
t.Errorf("Error unencoding: %v\n", err)
continue
}
if !mat.Equal(test.wanted.Components, b.Components) {
t.Logf("Components mismatch: Wanted %v but got %v\n", mat.Formatted(test.wanted.Components), mat.Formatted(b.Components))
t.Fail()
}
if test.wanted.K != b.K {
t.Logf("K value mismatch: Wanted %d but got %d\n", test.wanted.K, b.K)
t.Fail()
}
}
}