forked from james-bowman/nlp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlda_test.go
284 lines (260 loc) · 9.61 KB
/
lda_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
package nlp_test
import (
"fmt"
"math"
"testing"
"golang.org/x/exp/rand"
"github.com/james-bowman/nlp"
"gonum.org/v1/gonum/mat"
)
var stopWords = []string{"a", "about", "above", "above", "across", "after", "afterwards", "again", "against", "all", "almost", "alone", "along", "already", "also", "although", "always", "am", "among", "amongst", "amoungst", "amount", "an", "and", "another", "any", "anyhow", "anyone", "anything", "anyway", "anywhere", "are", "around", "as", "at", "back", "be", "became", "because", "become", "becomes", "becoming", "been", "before", "beforehand", "behind", "being", "below", "beside", "besides", "between", "beyond", "bill", "both", "bottom", "but", "by", "call", "can", "cannot", "cant", "co", "con", "could", "couldnt", "cry", "de", "describe", "detail", "do", "done", "down", "due", "during", "each", "eg", "eight", "either", "eleven", "else", "elsewhere", "empty", "enough", "etc", "even", "ever", "every", "everyone", "everything", "everywhere", "except", "few", "fifteen", "fify", "fill", "find", "fire", "first", "five", "for", "former", "formerly", "forty", "found", "four", "from", "front", "full", "further", "get", "give", "go", "had", "has", "hasnt", "have", "he", "hence", "her", "here", "hereafter", "hereby", "herein", "hereupon", "hers", "herself", "him", "himself", "his", "how", "however", "hundred", "ie", "if", "in", "inc", "indeed", "interest", "into", "is", "it", "its", "itself", "keep", "last", "latter", "latterly", "least", "less", "ltd", "made", "many", "may", "me", "meanwhile", "might", "mill", "mine", "more", "moreover", "most", "mostly", "move", "much", "must", "my", "myself", "name", "namely", "neither", "never", "nevertheless", "next", "nine", "no", "nobody", "none", "noone", "nor", "not", "nothing", "now", "nowhere", "of", "off", "often", "on", "once", "one", "only", "onto", "or", "other", "others", "otherwise", "our", "ours", "ourselves", "out", "over", "own", "part", "per", "perhaps", "please", "put", "rather", "re", "same", "see", "seem", "seemed", "seeming", "seems", "serious", "several", "she", "should", "show", "side", "since", "sincere", "six", "sixty", "so", "some", "somehow", "someone", "something", "sometime", "sometimes", "somewhere", "still", "such", "system", "take", "ten", "than", "that", "the", "their", "them", "themselves", "then", "thence", "there", "thereafter", "thereby", "therefore", "therein", "thereupon", "these", "they", "thickv", "thin", "third", "this", "those", "though", "three", "through", "throughout", "thru", "thus", "to", "together", "too", "top", "toward", "towards", "twelve", "twenty", "two", "un", "under", "until", "up", "upon", "us", "very", "via", "was", "we", "well", "were", "what", "whatever", "when", "whence", "whenever", "where", "whereafter", "whereas", "whereby", "wherein", "whereupon", "wherever", "whether", "which", "while", "whither", "who", "whoever", "whole", "whom", "whose", "why", "will", "with", "within", "without", "would", "yet", "you", "your", "yours", "yourself", "yourselves"}
func TestLDAFit(t *testing.T) {
tests := []struct {
topics int
r, c int
data []float64
expectedTopics [][]float64
}{
{
topics: 3,
r: 9, c: 9,
data: []float64{
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 3, 3, 3, 0, 0, 0,
0, 0, 0, 3, 3, 3, 0, 0, 0,
0, 0, 0, 3, 3, 3, 0, 0, 0,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
},
expectedTopics: [][]float64{
{0.33, 0.33, 0.33, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0.33, 0.33, 0.33},
{0, 0, 0, 0.33, 0.33, 0.33, 0, 0, 0},
},
},
{
topics: 3,
r: 9, c: 9,
data: []float64{
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 3, 5, 1, 0, 0, 0,
0, 0, 0, 3, 5, 0, 0, 0, 0,
0, 0, 0, 3, 5, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
},
expectedTopics: [][]float64{
{0.33, 0.33, 0.33, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 0.33, 0.33, 0.33},
{0, 0, 0, 0.428, 0.285, 0.285, 0, 0, 0},
},
},
}
for ti, test := range tests {
// set Rnd to fixed constant seed for deterministic results
lda := nlp.NewLatentDirichletAllocation(test.topics)
lda.Rnd = rand.New(rand.NewSource(uint64(0)))
in := mat.NewDense(test.r, test.c, test.data)
lda.Fit(in)
components := lda.Components()
for i := 0; i < test.topics; i++ {
var sum float64
for ri, v := range test.expectedTopics[i] {
cv := components.At(i, ri)
sum += cv
if math.Abs(cv-v) > 0.01 {
t.Errorf("Test %d: Topic (%d) over word (%d) distribution incorrect. Expected %f but received %f\n", ti, i, ri, v, cv)
}
}
if math.Abs(1-sum) > 0.00000001 {
t.Errorf("Test %d: values in topic (%d) over word distributions should sum to 1 but summed to %f\n", ti, i, sum)
}
}
}
}
func TestLDAFitTransform(t *testing.T) {
tests := []struct {
topics int
r, c int
data []float64
expectedDocs [][]float64
}{
{
topics: 3,
r: 9, c: 9,
data: []float64{
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 3, 3, 3, 0, 0, 0,
0, 0, 0, 3, 3, 3, 0, 0, 0,
0, 0, 0, 3, 3, 3, 0, 0, 0,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
},
expectedDocs: [][]float64{
{1, 0, 0},
{1, 0, 0},
{1, 0, 0},
{0, 0, 1},
{0, 0, 1},
{0, 0, 1},
{0, 1, 0},
{0, 1, 0},
{0, 1, 0},
},
},
{
topics: 3,
r: 9, c: 9,
data: []float64{
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 3, 5, 1, 0, 0, 0,
0, 0, 0, 3, 5, 0, 0, 0, 0,
0, 0, 0, 3, 5, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
},
expectedDocs: [][]float64{
{1, 0, 0},
{1, 0, 0},
{1, 0, 0},
{0, 0, 1},
{0, 0, 1},
{0, 0, 1},
{0, 1, 0},
{0, 1, 0},
{0, 1, 0},
},
},
}
for ti, test := range tests {
// set Rnd to fixed constant seed for deterministic results
lda := nlp.NewLatentDirichletAllocation(test.topics)
lda.Rnd = rand.New(rand.NewSource(uint64(0)))
in := mat.NewDense(test.r, test.c, test.data)
theta, err := lda.FitTransform(in)
if err != nil {
t.Error(err)
}
for j := 0; j < test.c; j++ {
var sum float64
for ri, v := range test.expectedDocs[j] {
cv := theta.At(ri, j)
sum += cv
if math.Abs(cv-v) > 0.01 {
t.Errorf("Test %d: Document (%d) over topic (%d) distribution incorrect. Expected %f but received %f\n", ti, j, ri, v, cv)
}
}
if math.Abs(1-sum) > 0.00000001 {
t.Errorf("Test %d: values in document (%d) over topic distributions should sum to 1 but summed to %f\n", ti, j, sum)
}
}
}
}
func TestLDATransform(t *testing.T) {
tests := []struct {
topics int
r, c int
data []float64
}{
{
topics: 3,
r: 9, c: 9,
data: []float64{
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 3, 3, 3, 0, 0, 0,
0, 0, 0, 3, 3, 3, 0, 0, 0,
0, 0, 0, 3, 3, 3, 0, 0, 0,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
},
},
{
topics: 3,
r: 9, c: 9,
data: []float64{
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
3, 3, 3, 0, 0, 0, 0, 0, 0,
0, 0, 0, 3, 5, 1, 0, 0, 0,
0, 0, 0, 3, 5, 0, 0, 0, 0,
0, 0, 0, 3, 5, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
0, 0, 0, 0, 0, 0, 4, 4, 4,
},
},
}
for ti, test := range tests {
// set Rnd to fixed constant seed for deterministic results
lda := nlp.NewLatentDirichletAllocation(test.topics)
lda.Rnd = rand.New(rand.NewSource(uint64(0)))
lda.PerplexityEvaluationFrequency = 2
in := mat.NewDense(test.r, test.c, test.data)
theta, err := lda.FitTransform(in)
if err != nil {
t.Error(err)
}
tTheta, err := lda.Transform(in)
if !mat.EqualApprox(theta, tTheta, 0.035) {
t.Errorf("Test %d: Transformed matrix not equal to FitTransformed\nExpected:\n %v\nbut received:\n %v\n", ti, mat.Formatted(theta), mat.Formatted(tTheta))
}
}
}
func ExampleLatentDirichletAllocation() {
corpus := []string{
"The quick brown fox jumped over the lazy dog",
"The cow jumped over the moon",
"The little dog laughed to see such fun",
}
// Create a pipeline with a count vectoriser and LDA transformer for 2 topics
vectoriser := nlp.NewCountVectoriser(stopWords...)
lda := nlp.NewLatentDirichletAllocation(2)
pipeline := nlp.NewPipeline(vectoriser, lda)
docsOverTopics, err := pipeline.FitTransform(corpus...)
if err != nil {
fmt.Printf("Failed to model topics for documents because %v", err)
return
}
// Examine Document over topic probability distribution
dr, dc := docsOverTopics.Dims()
for doc := 0; doc < dc; doc++ {
fmt.Printf("\nTopic distribution for document: '%s' -", corpus[doc])
for topic := 0; topic < dr; topic++ {
if topic > 0 {
fmt.Printf(",")
}
fmt.Printf(" Topic #%d=%f", topic, docsOverTopics.At(topic, doc))
}
}
// Examine Topic over word probability distribution
topicsOverWords := lda.Components()
tr, tc := topicsOverWords.Dims()
vocab := make([]string, len(vectoriser.Vocabulary))
for k, v := range vectoriser.Vocabulary {
vocab[v] = k
}
for topic := 0; topic < tr; topic++ {
fmt.Printf("\nWord distribution for Topic #%d -", topic)
for word := 0; word < tc; word++ {
if word > 0 {
fmt.Printf(",")
}
fmt.Printf(" '%s'=%f", vocab[word], topicsOverWords.At(topic, word))
}
}
}