
Department of Computer Science

GethDomains: decentralized domain
names on Ethereum blockchain
Blockchain and Distributed Ledger

Technologies

Professor:

Claudio Di Ciccio

Students:

Alessandro Scifoni (1948810)

Simone Sestito (1937764)

Andrea Tarricone (1888181)

Academic Year 2023/2024

Preface

Brief presentation of the protocol

GethDomains is a decentralized platform that allows, through the use of the GETH

token, the purchase of Registered Domains on the Ethereum blockchain.

Our motto: discover the new, decentralized domain name system.

Team members and main responsibilities

From the beginning, the whole team was working on the entire project, trying not to

leave anything to chance and confronting themselves when problems or new ideas arise

to be implemented or not. Once the idea and the purpose of the project have been

chosen, we have moved on to the definition of its architecture and then divided the

work, always maintaining a synergy. In particular:

• Alessandro Scifoni: Smart Contract Developer, Pitch and Report, unit tester

• Simone Sestito: Flutter Web Developer, CI/CD pipeline, Web3.js integration

• Andrea Tarricone: Smart Contract Developer, Pitch and Report, Storytelling

Outline of the report

Geth Domains is a decentralized platform that facilitates the association of TOR and

IPFS addresses with more accessible domain names based on Ethereum. Based on

blockchain, this system offers immutability and transparency of data, resistance to

censorship and elimination of centralized intermediaries. It leverages this blockchain

technology to ensure the security and stability of domain names, allowing users to

register them as NFT via the GETH token. The platform includes a marketplace

for buying and selling domains, giving users the chance to earn royalties for life

when selling their domains. Two distinct smart contracts, one for the token and

one for the Dapp, work synergistically to support this ecosystem without the need for

intermediaries.

1

Contents

1 Background 3

1.1 Blockchain’s history . 3

1.2 How the blockchain works . 3

1.3 Consensus algorithms . 3

1.4 Smart Contracts . 4

1.5 IPFS and TOR . 5

1.6 Encodings . 5

1.7 Huffman Tree . 5

2 Presentation of the Context 6

2.1 Aim of the Dapp . 6

2.2 Immutability . 6

2.3 Censorship . 6

2.4 No Third Parties . 7

2.5 Permissionless Blockchain . 7

2.6 Use cases . 7

3 Software Architecture 8

3.1 UML Sequence Diagram . 9

3.2 UML Class Diagram . 11

3.3 Smart contracts . 11

3.4 ERC1155 consideration . 13

3.5 Reentrancy attack consideration . 14

3.6 Oracle considerations . 14

3.7 Data encoding and compression . 14

4 Implementation 17

4.1 Frontend webapp implementation . 17

4.2 Smart Contracts . 21

5 Known Issues and Limitations 23

6 Conclusions 23

References 24

2

1 Background

1.1 Blockchain’s history

The first decentralized blockchain was conceptualized in 2008, year of the publication

of the Bitcoin white paper by an unknown person or group using the pseudonym

Satoshi Nakamoto[1]. The Bitcoin network officially came into existence on January

3, 2009, with the mining of the first block, known as the ”Genesis Block.” This marked

the beginning of the Bitcoin blockchain.

Ethereum, conceived by Vitalik Buterin [2], aimed to expand blockchain’s capabilities

beyond currency. The Ethereum blockchain went live on July 30, 2015, with its first

version, Homestead. Ethereum introduced ”smart contracts,” enabling developers to

create decentralized applications (DApps) on its platform.

1.2 How the blockchain works

The blockchain is a shared and an immutable ledger that contains transactions. The

principal components are:

• Nodes - participants in the blockchain that through the accounts (Externally

owned accounts) can make transactions and with a consensus mechanism can

propose a block (miners).

• Transactions are the build-in blocks of a ledger and represent the transfer of an

asset between accounts.

• Blocks are the structures that contain transactions and other useful fields like

the header or the hash to the previous block.

1.3 Consensus algorithms

The aim of consensus algorithms is to reach an agreement through the participants of

the blockchain. Given that blockchain is inherently decentralized, it requires a secure

mechanism to achieve consensus on determining the latest block (implicitly to the

previous ones because the hash of the previous block inside to a field of the header)

and the correctness of the transactions inside the block. Different types of mechanisms

to reach consensus have been proposed:

• Proof of Work: POW is a puzzle miners have to solve to gain the authority to

publish a block by finding a nonce that results in a block hash below a difficulty

threshold. POW can be solved by different miners at the same time so there can

be forks, but the most computational work chain is the one considered valid. For

this reason, a block is considered finalized after another 5 blocks. A miner who

3

solves POW gains a price, which is currently bitcoin plus the transaction fee in

the block.

• Proof of Stake: In POS the validators are not miners, but they stake a capital

of 32 Ethereum(ETH). In Ethereum Proof of Stake, the tempo is fixed. Each

epoch is composed by 32 slots and each slot lasts 12 seconds: 6 seconds for

block proposal and 6 seconds for block attestations. In each slot, a commit

of 128 validators is randomly chosen and one, from them, is randomly selected

to be a block proposer and has 6 seconds to forge a new block. Validators

vote on checkpoint pairs, justifying the most recent checkpoint with 2/3 of total

staked ETH votes, finalizing the oldest justified checkpoint, and employing a

sync committee every 256 epochs for block validation. Like in POW, validators

can have different views of the head of the chain. To solve this problem POS

uses LMD-GHOST algorithm, which chooses as the ”right” one, the one that has

the greatest accumulated weight of attestations. POS introduces slashing

mechanisms to deter dishonest behaviors, including double proposals, FFG double

votes, and attesters signing a checkpoint attestation that “surrounds” another

one.

1.4 Smart Contracts

Smart contracts are pieces of code that run on the blockchain. As transactions, once

posted on the blockchain, their code runs uncensorably and cannot be changed. For

this reason, they are considered trustworthy and secure, so participants in a smart

contract do not need to trust each other or a third party. Smart contracts run on the

Ethereum Virtual Machine and they are not for free. Every single bit or execution has

a cost in terms of gas.

ERC are standards for smart contracts, so they are guidelines for programming on

blockchain.

1.4.1 ERC-20

ERC-20[3] is the standard used to represent fungible tokens, meaning that each token

is identical and can be exchanged on a one-to-one basis with any other token of

the same type. These tokens are typically used to represent units of a certain resource,

like coins used for accessing features or loyalty points.

1.4.2 ERC-721

ERC721 is the standard used to represent non-fungible tokens[4]. Unlike ERC-20

tokens, they are not interchangeable on a one-to-one basis. Each ERC-721 token

is distinct and possesses unique characteristics, making them ideal for representing

4

ownership of unique items. They cannot be divided into smaller units like fungible

tokens so they are traded as whole units.

1.4.3 ERC-1155

ERC1155[5] is the combination of ERC-20 and ERC-721, so it allows the management

of both fungible and non-fungible tokens within a single contract. These tokens are very

useful in DApps that use batch operations, which are more efficient than operations

on a single token.

1.5 IPFS and TOR

IPFS is a distributed file system designed to create a more efficient and resilient way

of storing and sharing content on the internet.[6] The IPFS system associates a link

to the files stored.

TOR is a privacy-focused network that aims to enhance anonymity and security for

users on the internet. To access websites with ”.onion” domains, users need to use the

Tor browser, which is designed to connect to the Tor network. This browser allows

users to navigate and access content within the Tor ecosystem. [7]

1.6 Encodings

Encoding is the process of converting data from one form to another, typically for the

purpose of efficient storage, transmission, or representation. Some time happen that

an encoding such as base64 is not efficient for the aim of the DApp, so finding one is

crucial to reduce the amount of data and their cost.

1.7 Huffman Tree

Huffman coding is a compression algorithm that assigns variable-length codes to input

characters, with shorter codes assigned to more frequently occurring characters. The

algorithm begins by analyzing the frequency of each character in the input data (e.g.,

a text file). The algorithm builds a binary tree known as the Huffman tree. Each leaf

node of the tree represents a character along with its frequency. Starting from the

root of the tree, traversing left and right corresponds to adding ’0’ or ’1’ to the code.

The codes assigned to the characters are determined by the path from the root to the

respective leaf nodes. The original data is then encoded using the generated Huffman

codes. The resulting compressed data typically occupies fewer bits than the original

data, especially if there are frequently occurring characters. To decode the data the

code itself is used, crossing through the nodes up to the character’s leaf associated.[8]

5

2 Presentation of the Context

Tor and IPFS are born and developed to face challenges related to privacy, security

and decentralization of information on the internet.

They also allow access to online content that could be censored or blocked in certain

regions.

Websites hosted on TOR are often more difficult to censor or block, thus helping to

ensure freedom of information.

Similar speech for IPFS where people can publish content without having to rely on

a centralized server. This way, content remains accessible even if some nodes in the

network are disconnected or censored.

2.1 Aim of the Dapp

Accessing such data can be inconvenient as resource addresses are represented with

poorly manageable hash keys.

In this regard, Geth Domains is born, a decentralized application created with the

aim of encouraging a platform to associate complex TOR and IPFS addresses to more

”friendly” .geth addresses.

This helps create a more accessible and user-friendly ecosystem on the Ethereum

blockchain.

We decided to rely on a decentralised system as it offers several advantages including

immutability and transparency of data, the absence of an intermediary and resistance

to censorship.

2.2 Immutability

The data on a blockchain is immutable once it has been confirmed. This means that

once a domain name is registered on GethDomains, it is difficult to change or delete

it without the network’s consent. This contributes to the stability and security of the

system.

The only one able to perform operations on the domain is the possessor.

2.3 Censorship

No single central authority has complete control over the domain name registry.

This makes it more difficult for government authorities or other entities to censor,

block or confiscate specific domain names.

6

2.4 No Third Parties

It is not necessary to rely on central intermediaries such as registers of traditional

domains.

This reduces the risk of manipulation, censorship or other interference by centralized

third parties.

The lack of an intermediary also leads to cost savings and greater efficiency as well as

an increase in ownership control by the user as they are not dependent on anyone.

2.5 Permissionless Blockchain

We decided to use the blockchain as there is the need to save all transactions linked

to a domain in a clear and transparent way.

In this way anyone who makes purchases can register the new ownership by writing

on the blockchain.

The blockchain, in this context, plays the role of impartial intermediary within this

ecosystem without knowing a priori who will use it.

2.6 Use cases

Our platform will allow you to register your IPFS or TOR domain by associating an

address with it. Geth, put it on sale if you do not want to have more possession and

therefore offer a marketplace to buy domains to users.

The domains will be registered on the ethereum blockchain via NFT and all operations

carried out thanks to the native currency of the Dapp: GETH Token.

In addition, when a user sells his domain you will see a system of royalties that will

allow him to earn a lifetime on each future sale and subsequent transfer of ownership.

All the operations mentioned here will be seen in the next section and in particular we

will go into detail of the two smart-contracts, one for the token and one for the Dapp,

which allow the existence of this ecosystem and the absence of intermediaries.

7

3 Software Architecture

The overall DApp consists of various components, summarized in figure 1:

• The code is stored in a GitHub repository, publicly accessible from the date of

the submission of this project: each team member is set as a collaborator and

has full access to it

• Every time a team member pushes his commits, a CI/CD pipeline on GitHub

Actions will run, deploying the webapp and making the new version reachable

from the associated website

• In addition to it, the HTML documentation of the latest Solidity smart contracts

is generated and published (https://gethdomains.best/smart contract docs.html)

• The webapp will interact with the code stored and running on the blockchain

through a Web3 provider like Metamask

• The DomainMarketplace smart contract (which manages the domain names

selling and registration) interacts with the Geth smart contract to manipulate

the users’ balance

• Currently, both smart contracts are running on Sepolia testnet (a semi-production

environment), after being tested and developed using Truffle and Ganache

It’s noticeable that no centralized backend exists, and that’s the core of Decentralized

Applications, like GethDomains.

Webapp

Hosted on GitHub Pages

Pointed by https://gethdomains.best

Deploy triggered
on Git push

GitHub
Repository

Geth.sol DomainMarketplace.sol

Ethereum Blockchain

Web3
Provider

Figure 1: GethDomains DApp general architecture

8

https://gethdomains.best/smart_contract_docs.html

3.1 UML Sequence Diagram

Sequence Diagrams are use to show intereactions between the entities of our Dapp.

They show the interections in a time sequence exchange messages. Below there are

the sequence diagrams of the most important operation in our Dapp.

GETH
Domain

SmartContract
ERC721

SmartContract
ERC20

Actor 1

METAMASK

Response

Insert Domain

Login

Domain Availability Check

Request Connection

Response

Buy Domain

Check if the actor1 has enough GETH to
purchase the domain and if everything

is ok the ERC721 manages the mint and the
transfer

GETH

Transfer Property

Event
Transfer

GETH
Domain

SmartContract
ERC721

SmartContract
ERC20

Actor 1

METAMASK

Response

Looking for in sale
domain

Login

Actor 2

In sale domain list

Buy domain

Transfer Property

Event
Domain Sold

Actor 3

Request Connection

otherwise

GETH

Royalties

Check if the actor1 has enough GETH to
purchase the domain. If it doesn't respect

the condition to send royalties

GETH - Royalties

9

GETH
Domain

SmartContract
ERC721

SmartContract
ERC20

Actor 1

METAMASK

Response

Sell Domain

Login

Set Domain for Sale

Event
DomainInSale

Request Connection

10

3.2 UML Class Diagram

A class diagram represents the static structure of a system by depicting the classes,

their attributes, methods, and the relationships among classes. It provides a visual

representation of the essential components and their relationships in the design or

structure of a software system.
<<Abstract>>

ERC721
cs2/ERC721.sol

Private:
_name: string
_symbol: string
_owners: mapping(uint256=>address)
_balances: mapping(address=>uint256)
_tokenApprovals: mapping(uint256=>address)
_operatorApprovals: mapping(address=>mapping(address=>bool))

Private:
_checkOnERC721Received(from: address, to: address, tokenId: uint256, data: bytes)
Internal:
_baseURI(): string
_ownerOf(tokenId: uint256): address
_getApproved(tokenId: uint256): address
_isAuthorized(owner: address, spender: address, tokenId: uint256): bool
_checkAuthorized(owner: address, spender: address, tokenId: uint256)
_increaseBalance(account: address, value: uint128)
_update(to: address, tokenId: uint256, auth: address): address
_mint(to: address, tokenId: uint256)
_safeMint(to: address, tokenId: uint256)
_safeMint(to: address, tokenId: uint256, data: bytes)
_burn(tokenId: uint256)
_transfer(from: address, to: address, tokenId: uint256)
_safeTransfer(from: address, to: address, tokenId: uint256)
_safeTransfer(from: address, to: address, tokenId: uint256, data: bytes)
_approve(to: address, tokenId: uint256, auth: address)
_approve(to: address, tokenId: uint256, auth: address, emitEvent: bool)
_setApprovalForAll(owner: address, operator: address, approved: bool)
_requireOwned(tokenId: uint256): address
Public:
constructor(name_: string, symbol_: string)
supportsInterface(interfaceId: bytes4): bool
balanceOf(owner: address): uint256
ownerOf(tokenId: uint256): address
name(): string
symbol(): string
tokenURI(tokenId: uint256): string
approve(to: address, tokenId: uint256)
getApproved(tokenId: uint256): address
setApprovalForAll(operator: address, approved: bool)
isApprovedForAll(owner: address, operator: address): bool
transferFrom(from: address, to: address, tokenId: uint256)
safeTransferFrom(from: address, to: address, tokenId: uint256)
safeTransferFrom(from: address, to: address, tokenId: uint256, data: bytes)

<<Abstract>>
ERC721Royalty

cs2/ERC721Royalty.sol

Public:
supportsInterface(interfaceId: bytes4): bool

DomainMarketplace
cs2/GethDomain.sol

Public:
payGeth: IERC20
prezzoBase: uint32
domains: mapping(bytes=>Domain)
keys: bytes[]

Internal:
_feeDenominator(): uint96
External:
purchaseNewDomain(domain: bytes, torOrIpfs: bytes, isTor: bool)
purchaseExistingDomain(domain: bytes, price: uint32)
sellDomain(domain: bytes, price: uint32): (prezzo: uint256) <<onlyDomainOwner>>
retrieveDomain(domain: bytes) <<onlyDomainOwner>>
setTor(domain: bytes, dominioTor: bytes) <<onlyDomainOwner>>
setIpfs(domain: bytes, dominioIpfs: bytes) <<onlyDomainOwner>>
setPrezzoBase(prezzo: uint32) <<onlyOwner>>
getId(domain: bytes): (id: uint256)
getUserDomains(user: address): (bytes[], Domain[])
getDomainById(id: uint256): (bytes, Domain)
getDomainsForSale(): (bytes[], Domain[])
Public:
<<event>> DomainForSale(domain: bytes, seller: address, price: uint256)
<<event>> DomainSold(seller: address, buyer: address, domain: bytes)
<<event>> RoyaltiesPaid(originalOwner: address, buyer: address, domain: bytes, royaltiesAmount: uint256)
<<event>> TorOverwritten(domain: bytes, owner: address)
<<event>> IpfsOverwritten(domain: bytes, owner: address)
<<modifier>> onlyDomainOwner(domain: bytes)
constructor()

<<Struct>>
Domain

cs2/GethDomain.sol

price: uint32
resoldTimes: uint32
dominioTorOrIpfs: bytes
isTor: bool

<<Interface>>
IERC20

cs2/IERC20.sol

External:
totalSupply(): uint256
balanceOf(account: address): uint256
transfer(to: address, value: uint256): bool
allowance(owner: address, spender: address): uint256
approve(spender: address, value: uint256): bool
transferFrom(from: address, to: address, value: uint256): bool
Public:
<<event>> Transfer(from: address, to: address, value: uint256)
<<event>> Approval(owner: address, spender: address, value: uint256)

<<Abstract>>
ERC20

cs2/ERC20.sol

Private:
_balances: mapping(address=>uint256)
_allowances: mapping(address=>mapping(address=>uint256))
_totalSupply: uint256
_name: string
_symbol: string

Internal:
_transfer(from: address, to: address, value: uint256)
_update(from: address, to: address, value: uint256)
_mint(account: address, value: uint256)
_burn(account: address, value: uint256)
_approve(owner: address, spender: address, value: uint256)
_approve(owner: address, spender: address, value: uint256, emitEvent: bool)
_spendAllowance(owner: address, spender: address, value: uint256)
Public:
constructor(name_: string, symbol_: string)
name(): string
symbol(): string
decimals(): uint8
totalSupply(): uint256
balanceOf(account: address): uint256
transfer(to: address, value: uint256): bool
allowance(owner: address, spender: address): uint256
approve(spender: address, value: uint256): bool
transferFrom(from: address, to: address, value: uint256): bool

Geth
cs2/Geth.sol

Private:
GETH_TO_WEI: uint64
operator: address

Private:
calculateTokenAmount(weiAmount: uint256): uint256
calculateWeiAmount(tokenAmount: uint256): uint256
External:
<<payable>> purchaseTokens()
purchaseWei(tokenAmount: uint256)
setOperator(newOperator: address) <<onlyOwner>>
destroy() <<onlyOwner>>
Public:
constructor()
decimals(): uint8
allowance(owner: address, spender: address): uint256

<<Abstract>>
Ownable

cs2/Ownable.sol

Private:
_owner: address

Internal:
_checkOwner()
_transferOwnership(newOwner: address)
Public:
<<event>> OwnershipTransferred(previousOwner: address, newOwner: address)
<<modifier>> onlyOwner()
constructor(initialOwner: address)
owner(): address
renounceOwnership() <<onlyOwner>>
transferOwnership(newOwner: address) <<onlyOwner>>

3.3 Smart contracts

The Geth Domain Dapp is based on fungible and non-fungible tokens.

The Geth contract manages the fungible token of the Dapp, used to buy a new or an

existing domain. The most important field of the smart contract is the operator, the

address of another smart contract that will be allowed to spend geth from the balance

of domain buyers. The main functions are:

• purchaseTokens is used to purchase Geth tokens with ETH, according to the

established rate.

• purchaseWei is used to withdraw ETH with Geth tokens, according to the

established rate

• allowance is used to stablish the amount that the operator can spend from

the owner balance. This function has been overwritten to comply with the

specification that states that the operator should be allowed to spend geth from

the balance of domain buyers.

11

The DomainMarketplace contract regulates the NFT Domain name marketplace and

registration. It follows ERC721 interface for interoperability and extends the abstract

contract Ownable to manage operation security and ERC721Royalties to manage the

royalties mechanism. Within the GethDomain.sol we define a struct that represents a

Domain in our Dapp. The struct is composed of the following fields:

• the price of the domain if it is for sale, or zero if not.

• the resoldTimes attribute that keeps how many times the domain is sold, to

know when royalties should be payable.

• pointedAddress is a field containing a bytes pointer.

• isTor is a boolean to know which type of pointer is pointedAddress.

Within the GethDomain.sol we define some events to notify the clients to update the

UI.

• DomainForSale is emitted when a user sets his domain for sale by adding a price.

• DomainSold is emitted when a user buys an existing domain, previously settled

for sale.

• RoyaltiesPaid is emitted to notify the creator of the domain that he received

royalties by the sale.

• DomainPointerEdited is emitted when an user overwrites the field pointedAddress.

In the smart contract is defined the onlyDomainOwner to check that the caller of a

method is the owner of the domain concerned. The DomainMarketplace has some

fields such as:

• gethTokensContract is an instance of the erc20 used to pay the purchases.

• newDomainPrice used to keep a standard prize for purchasing a new domain in

Geth.

• domains is the mapping of domains’ information, given the bytes of an encoded

name.

• domainsKeys is the list of all the domains’ names, used to iterate over the

mapping.

• feeNumerator is the numerator of the royalty fees fraction.

12

The constructor of the smart contract is used to set the instance of the erc20 used

to pay the purchases. The main methods of the smart contract are:

• purchaseNewDomain registers a new domain, given its name and the address it

points to. The domain name is encoded as bytes, and then hashed to get the ID

of the NFT. The domain is minted to the creator only after checking that the

domain is not already registered and that the purchaser has enough Geth tokens

to pay the registration fee. The price is set to 0 since it is not for sale and the

geths paid are added to the contract balance. The domain is also set to point to

the given address.

• purchaseExistingDomain is used to purchase an existing domain, given its name

and price. The domain is transferred to the buyer, and the seller receives the

price. The creator of the domain receives its royalties, if the domain has been

resold. The function checks that the buyer is not the seller, that he must have

enough Geth tokens to pay the price and the consistency between the price

displayed in the UI and the actual cost. The domain name must already be for

sale, otherwise the transaction will revert.

• setNewDomainPriceSet the price of a new domain, in Geth. This function can

be called only by the contract owner thanks to the Ownable interface, because

of its security implications.

Some functions have the onlyDomainOwner because they can be called only by the

owner of the domain:

• sellDomain puts a domain for sale, given its name and the price. The price

must be greater than 0, otherwise the transaction will revert.

• retrieveDomain removes a domain from sale, given its name. The domain must

be for sale, otherwise the transaction will revert.

• setTor and setIPFS edit a domain, given its name and the Tor or IPFS address

it will point to.

It’s worth noticing that the smart contracts Solidity source code is documented

following the NatSpec format, following a standard for documentation.

3.4 ERC1155 consideration

We decided to use two smart contracts to manage our tokens instead of using only one

implementing erc1155 because despite it allows grouping multiple transfers of different

assets into a single transaction, thereby reducing the overall cost of operations, our

functions don’t transfer different assets from one user to another. So we preferred this

approach to improve readability and reusability.

13

3.5 Reentrancy attack consideration

A reentrancy attack[9] occurs when a function makes an external call to another

untrusted contract. Then the untrusted contract makes a recursive call back to the

original function in an attempt to drain funds. When the contract fails to update its

state before sending funds, the attacker can continuously call the withdraw function

to drain the contract’s funds. PurchaseWei function in geth.sol contract could be

vulnerable to it but it’s not, because it never makes a call to an external contract and

most importantly, it follows the Check Effects Interactions pattern [10].

3.6 Oracle considerations

In our Dapp a domain can point to an address that may not exist. To avoid the

user’s mistakes, which means additional cost, we thought to use an oracle that checks

the correctness of the pointer. After careful evaluation of our needs and the costs

associated with using an external oracle, we have decided not to adopt this approach.

Our decision is based on the fact that both the public key extracted by an onion

address and the multi-base hash of IPFS address have their checksum. So in Tor is

nearly impossible to make a mistake on a character that allows a match with another

address. Instead in IPFS the hash is encoded through some base, so the decodification

fails if some bytes don’t match. In summary, our Dapp user is safe from this point of

view, but an external user can still set an invalid TOR or IPFS address and that’s on

him.

3.7 Data encoding and compression

In the blockchain, we must save several types of string data, but reserving as few

bytes as possible, in order to save costs. In this section, we’ll understand the different

encoding strategies applied to achieve this result.

3.7.1 Naive Domain Encoding

The domain name is a string containing all lowercase ASCII letters from ’a’ to ’z’,

ending in .geth. Our goal is to shrink it as much as possible, in order to save the

smallest amount of bytes possible on the blockchain.

The suffix can of course be removed since it’s constant.

The first naive approach that comes into mind is to use 5 bits to encode each

lowercase letter. The calculation to reach this conclusion is simple:

BitsPerChar = ⌈log2(ord(′z′)− ord(′a′) + 1)⌉ = 5

Every 5 bits, a character is encoded so it’s basically a task of reading 5 bits at a time

from a Byte stream.

14

3.7.2 Huffman Coding

This coding, discussed theoretically in section 1.7, it’s practically applied to compress

domains. Typically, Huffman guarantees the best compression possible, chunking the

input stream every single byte, but it must also calculate the Huffman tree on the input

to compress, and it must be stored. Storing this additional piece of data is absolutely

counterproductive for our goal, but the intuition comes: the prior probability (or

frequency) of a character appearing in the input text (i.e.: the domain name to

compress) may be assumed to be very similar with respect to the average domain

name already existing on the web.

We have collected data about the domain names registered on the standard web on 6

days, using a third-party service. More than 1.3 million domain names have been

collected. They have finally been concatenated and the Huffman tree generation

algorithm was run on that text. The resulting tree is the one that is actually used for

Gethdomains compression.

However, it works because is based on the strong assumption that the characters in the

user input domain name follow the same probability distribution. This is not always

the case, so in those cases, we fall back to the 5 bits encoding we have seen earlier.

The first bit (not byte) in the resulting byte array indicates the encoding used.

3.7.3 Tor address encoding

An Onion v3 address is basically a concatenation of the 32 bytes ECDSA public key

of the hidden service, with its checksum and address version number.[11]

We can simply decode and extract the relevant 32 bytes, storing just them.

The onion address will be easily recalculated client-side by calculating the checksum

and concatenating the various parts, encoding all of them as Base32 without padding.

This will make the original 62 characters long address, just 32 bytes.

3.7.4 IPFS CID

The CID (Content IDentifier) is a special string derived from the hash of the file. It

exists in many forms, but since v0 is always convertible to v1, we will focus only on

this one.

It is a concatenation of the following elements:[12]

<cidv1> ::= <multibase-prefix>

<multicodec-cidv1><multicodec-content-type>

<multihash-content-address>

15

It is possible to process it as follows:

1. Transform it from v0 to v1, if not already

2. Decode the v1 string, according to the first character which indicates the Base

that encodes the rest (according to the Multibase specification)

3. Throw away the first decoded byte, which is always 1 in the v1 CID version

While it’s true that we have lost forever which was the original base that encoded

the output or the version of the CID, these pieces of information are actually useless:

re-encoding it in any base we want, in v1 version, will make it work just fine because

of its interoperability.

16

4 Implementation

4.1 Frontend webapp implementation

The frontend of this app has been developed using Flutter, written in the Dart

programming language, then compiled to run on the web. Flutter is a multi-platform

framework to make apps, both on mobile and desktop, including the web, as in this

case.

The software architecture of this app follows a Single Page Application pattern,

where the webapp is rendered in the browser. Moreover, in this specific case, no HTML

or CSS is used. But instead the content is rendered on a web canvas using CanvasKit.

Finally, its interoperability with JavaScript allowed the use of Web3.js APIs as

usual.

It is currently hosted via GitHub Pages on https://gethdomains.best, compiled

using a CI/CD pipeline on GitHub Actions at every push on the repository.

4.1.1 Data flow across software layers

The flow of data when communicating with the Smart Contract is interesting and more

focused on design patterns such as BLoC (summarized in figure 2):

• the user interface is made up of Widgets, the core element for the UI

• in most of the cases, when a user input is required, the text field is attached to

a Reactive Form, with real-time client-side validations to provide a better UX

when the user inputs data that is not in the right format

• input data is then collected in a model object, to be sent to the business logic of

the application, implemented using BLoCs

• inside of a BLoC is kept the state of the application, such as the current balance,

the list of domains currently for sale, and so on; that allows various parts of the

webapp to interact with the global state in a reactive and decoupled way

• then data has a first transformation, from a model or an event to simpler data

structures to be sent to the Repository layer which is at a lower abstraction level

with respect to the actual Smart Contract interaction code

• the Repository will transform data such as domain names from String to the

data type that the Smart Contract requires in input, such as byte arrays (in

Dart: Uint8List)

• the invocation is now at the level of the smart contract Dart class: this is

responsible for the call of the JavaScript code from Dart; for instance, byte arrays

and more complex data types must be simplified in order to be serialized then

17

https://gethdomains.best

sent to a function written in a completely different language such as JavaScript

(Uint8List may become base64 strings, structs may be sent or received as JSON

strings, and so on)

• finally, the call has reached the JavaScript code, where the web3.js API stands

and can be used to make the actual feature requested: whatever we had before is

just an abstraction layer required to drastically improve the quality of the code

thanks to the decoupling of responsibilities, according to the SRP principle

UI Event
UI Widget /

Reactive Form Model objectBLoC Business
Logic

Encoded
dataRepository Serialize

Send to JS
Smart Contract
Dart Wrapper

Web3.js
API

Dart code

Figure 2: Layered architecture overview

4.1.2 Transaction hash immediately available

As soon as the transaction is sent, a transaction hash is available and it’s good practice

to inform the user of this result. To do that, on the JavaScript side the asynchronous

function call is handled using Promises, which will be translated on the Dart side as

Futures, but the conceptual meaning is exactly the same. At this point, a global event

of this transaction is propagated and the user sees a nice looking banner, with a link

to Etherscan to actually see his transaction. Also, the global state cannot be updated

so soon, because the transaction is not mined in a confirmed block yet.

After some time, the transaction will be confirmed and the events emitted will also

be received. Only here and now we are able to update the global state informing the

user of the success of the action. Updating the global state (contained in a BLoC) will

trigger a reactive redraw of elements of the UI affected by the change.

4.1.3 Fees estimation

Right before sending a transaction, a local pre-check is made. The gas fees are

estimated calling the corresponding API provided by web3.js (which leverages on the

Etherum provider, often Metamask). The noticeable here is that, in case the smart

contract will raise an error and revert its execution given the current local state of

the Smart Contract, the user will be notified immediately, without the need to send a

transaction that will likely fail.

Moreover, the gas fees estimation is useful and displayed interactively to the user

when its input is able to affect the fees required, in order to make it more aware.

18

4.1.4 Login management

The login procedure, when connected to Metamask or another compatible provider, is

basically the request of the permission to read a registered Ethereum account. In case

the app can do that right away, the permission was already granted and the user can

be considered logged in.

Different story regarding the logout: it is implemented artificially by saving that

in the state of the app and making it persistent across refreshes of the page (i.e.:

localStorage in the browser, but abstracted using HydratedBLoC).

4.1.5 Settings

A few settings are available for the user to change:

• the IPFS gateway is one of the most important ones because supposing the

anti-censorship goal of the service, in case one provider gets blocked or simply it

is down for a while, another one can be freely chosen and used

• to improve the UX of the app, a setting on Dark and Light theme is made: the

default setting is to follow the brightness of the operating system and therefore

the current browser

4.1.6 Metamask integration

Metamask is considered key in the UX improvement.

After the user buys our token for the first time, a Metamask prompt will pop-up

(figure 3) asking to add the ERC-20 token to the wallet directly, via the wallet watchAsset

API. It allows the user to have an eye on his balance right fromMetamask, but also send

and receive tokens directly by interacting with the wallet. Since the smart contract

implements the ERC-20 interface and the frontend webapp handles the Transfer events,

this approach is totally fine and incentivized by showing the Metamask dialog.

A very similar approach is used for the domain, which is actually an NFT. Its

contract implements the ERC-721 interface and the webapp allows the user to add the

domain in the Metamask NFT subsection, allowing traditional token exchange outside

of the webapp. As before, the webapp handles this situation just fine and in a reactive

way listening to the Transfer events emitted by the smart contract.

4.1.7 Encoder library

The logic to encode and decode multiple types of data is considered distinct from the

app itself from a code recycle perspective, so it was worth making it a totally separate

library.

19

(a) Prompt for ERC-20 token (b) Prompt for ERC-721 token

Figure 3: Metamask dialogs

It has the advantage of being reusable and cross-compilable, from desktop apps

(on Windows, OS X, Linux) to mobile apps (Android, iOS) but also on the web (both

JavaScript or WebAssembly) thanks to the power of the Dart programming language.

In our specific situation, it was also compiled as a CLI app that runs on Linux, for

testing purposes when the webapp didn’t exist yet (as can be seen in figure 4).

The library offers the logic to encode and decode various data:

• domain names, using a mixed encoding strategy (Huffman trees or using 5 bits

to encode each character)

• Tor Onion v3 addresses, extracting the ECDSA public key

• IPFS CID, extracting only the multihash and multicoded parts of the specification

It also provided a command line interface, with a short help page, to make it usable

in a simple way.

4.1.8 Future progress for the webapp

As we had the possibility to observe the webapp layered architecture in one of the

previous subsections, it’s obvious as the only layer in which the actual platform native

20

Figure 4: Example usage of the encoder library via CLI

implementation shows up is right before calling the JavaScript function. All the

business logic and the high level transformations are totally separated and recyclable.

In practical terms, this means that it would be relatively easy to just reimplement

the calls to the smart contract using another library (for example a wrapper that

calls the Metamask mobile app), then the webapp will immediately be compilable for

another operating system, making it an Android or iOS app in little time, just as an

example.

4.1.9 Screenshots

4.2 Smart Contracts

4.2.1 OpenZeppelin library

To minimize the risk of vulnerabilities we used the OpenZeppelin library which provides

heavily tested contracts that implement the interfaces defined by the ERC standards.

To represent a domain, a non-fungible token, we implemented the ERC721Royaltee’s

21

interface in our smart contract DomainMarketplace. Its interface allows us to represent

NFTs and manage their transfer and the possible amount of royalties that the creator

of a domain would expect. For the Geth token, used for the purchase of a domain,

we extended the erc20 contract of OpenZeppelin which is used to represent fungible

tokens.

4.2.2 Tools adopted

The testing of the smart contracts was made using 2 different environments.

The first one is composed by Truffle and Ganache. Truffle was used to deploy

smart contracts and work on them through the truffle console. To optimize the testing

we wrote some JavaScript tests. Ganache was used as a workspace where the changes

to the state of the blockchain were visible. The JavaScript tests were made on the

main functionalities of the smart contracts:

• For the GethDomain.sol the functions called to buy a new domain or an existing

domain were tested, checking if the state of the contract and the user account

were consistent with the amount of Geth spent, and that the data was stored

correctly in the chain. Tests were made on the functions to sell and retrieve an

owned domain too, checking the data consistency and the specified constraints

on the permissions of these.

• For Geth.sol the test consists of purchasing and selling the token, checking the

consistency of the balances.

The second one was made through the deployment on Sepolia and using remix

with metamask to interface with the testenet. Testnets[13] are blockchains designed to

mimic the operating environment of a mainnet but exist on a separate ledger. Sepolia

ETH is the currency used to pay to complete transactions on the Sepolia testnet,

similar to how ETH is used to pay for computation on Ethereum’s mainnet.

22

5 Known Issues and Limitations

During the analysis and development of the DApp, we identified two main limitations

closely related to the user experience. Currently, the fact of not having common

browsers that can support the opening of such domains registered on the Ethereum

blockchain increases the complexity of using the platform making it to the hands of

only those more experienced users. Thus, although access to resources saved on TOR

or IPFS is simplified, which are usually pointed by hash addresses is still difficult

for what is explained above to have an easy mass adoption for all those users less

accustomed to blockchain technology.

Secondly, there is a dependence on using digital wallets like Metamask, necessary

to authenticate the user within the DApp but binding in performing even the simplest

operations such as data consultation as they are deposited within the Ethereum

blockchain. A possible compromise would be to save some information outside of

it in order not to be tied to the use of wallets but you would lose the main purpose of

the DApp.

6 Conclusions

Finally, we are aware that our success is closely linked to the growth of the blockchain

and web3 industry. We hope that the evolution of decentralized technologies will

advance rapidly, thus helping to eliminate current barriers and facilitate a seamless

transition to a more decentralized and inclusive digital landscape.

GethDomains, like Dapp at the forefront, is a tangible example of how the mission

of simplifying the interaction with resources on decentralized systems can be realized

in a concrete way. By allowing users to autonomously manage their domains on

Ethereum, the platform promotes a user-centered vision, highlighting the fundamental

concept of decentralization.

Through the architecture of the Ethereum blockchain, GethDomains provides an

environment in which the user has complete control over their domains, ensuring

unprecedented freedom in the use of digital resources. This approach eliminates the

risk of censorship and reduces dependence on third parties, transforming the user into

an autonomous actor within the decentralized ecosystem.

23

References

[1] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. May 2009.

[2] Vitalik Buterin. A next-generation smart contract and decentralized application

platform. https://ethereum.org/en/whitepaper/, 2014.

[3] Fungible tokens (ft). https://ethereum.org/en/developers/docs/standards/

tokens/erc-20/.

[4] Non-fungible tokens (nft). https://ethereum.org/en/developers/docs/

standards/tokens/erc-721.

[5] Fungible and non-fungible tokens (ft/nft). https://ethereum.org/en/

developers/docs/standards/tokens/erc-1155/.

[6] Juan Benet. IPFS - content addressed, versioned, P2P file system. CoRR,

abs/1407.3561, 2014.

[7] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The

Second-Generation onion router. In 13th USENIX Security Symposium (USENIX

Security 04), San Diego, CA, August 2004. USENIX Association.

[8] David A. Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101, 1952.

[9] Reentrancy attack. https://hackernoon.com/

hack-solidity-reentrancy-attack.

[10] Checks-effects-interactions pattern. https://docs.soliditylang.org/en/v0.

6.11/security-considerations.html.

[11] The Tor Project. Tor rendezvous specification - version 3. https://github.com/

torproject/torspec/blob/8961bb4d83fccb2b987f9899ca83aa430f84ab0c/

rend-spec-v3.txt, 2015.

[12] Protocol Labs Inc. Cid (content identifier) specification. https://github.

com/multiformats/cid/blob/603f4570ba051192224dd1a3b131a6ebdd486b4f/

README.md, 2020.

[13] What is the sepolia testnet? https://www.alchemy.com/overviews/

sepolia-testnet.

24

https://ethereum.org/en/whitepaper/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-20/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721
https://ethereum.org/en/developers/docs/standards/tokens/erc-721
https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/
https://ethereum.org/en/developers/docs/standards/tokens/erc-1155/
https://hackernoon.com/hack-solidity-reentrancy-attack
https://hackernoon.com/hack-solidity-reentrancy-attack
https://docs.soliditylang.org/en/v0.6.11/security-considerations.html
https://docs.soliditylang.org/en/v0.6.11/security-considerations.html
https://github.com/torproject/torspec/blob/8961bb4d83fccb2b987f9899ca83aa430f84ab0c/rend-spec-v3.txt
https://github.com/torproject/torspec/blob/8961bb4d83fccb2b987f9899ca83aa430f84ab0c/rend-spec-v3.txt
https://github.com/torproject/torspec/blob/8961bb4d83fccb2b987f9899ca83aa430f84ab0c/rend-spec-v3.txt
https://github.com/multiformats/cid/blob/603f4570ba051192224dd1a3b131a6ebdd486b4f/README.md
https://github.com/multiformats/cid/blob/603f4570ba051192224dd1a3b131a6ebdd486b4f/README.md
https://github.com/multiformats/cid/blob/603f4570ba051192224dd1a3b131a6ebdd486b4f/README.md
https://www.alchemy.com/overviews/sepolia-testnet
https://www.alchemy.com/overviews/sepolia-testnet

	Background
	Blockchain's history
	How the blockchain works
	Consensus algorithms
	Smart Contracts
	IPFS and TOR
	Encodings
	Huffman Tree

	Presentation of the Context
	Aim of the Dapp
	Immutability
	Censorship
	No Third Parties
	Permissionless Blockchain
	Use cases

	Software Architecture
	UML Sequence Diagram
	UML Class Diagram
	Smart contracts
	ERC1155 consideration
	Reentrancy attack consideration
	Oracle considerations
	Data encoding and compression

	Implementation
	Frontend webapp implementation
	Smart Contracts

	Known Issues and Limitations
	Conclusions
	References

