Skip to content

Evaluation of local fine-tuned checkpoint is ~10× slower than the same-weight original Hugging Face model #118

@SondosBsharat

Description

@SondosBsharat

I’m using this command to evaluate my fine-tuned 7B model on AIME24 “no figures”:
lm_eval --model vllm
--model_args pretrained=../../train/ckpts/s1-20250509_212555,dtype=float32,tensor_parallel_size=1
--tasks aime24_nofigures
--batch_size auto
--apply_chat_template
--output_path s1.1forcingauto
--log_samples
--gen_kwargs "max_gen_toks=32768,max_tokens_thinking=auto"
It loads in about 7 seconds but then takes roughly 20 minutes just to process the first example, whereas evaluating the original Qwen-7B model completes in just a couple of minutes under the same settings. If I switch to dtype=float16, throughput improves dramatically but at the cost of noticeable accuracy degradation. Is there something I’m missing in my configuration or checkpoint structure that could explain this drastic slowdown under float32?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions