-
Notifications
You must be signed in to change notification settings - Fork 12
/
experiments.py
270 lines (237 loc) · 10.3 KB
/
experiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import yaml
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
from core import console
from core.jobutils.registry import WandBJobRegistry
from core.jobutils.scheduler import JobScheduler
def create_train_commands(registry: WandBJobRegistry) -> list[str]:
# ### Hyper-parameters
datasets = ['facebook', 'reddit', 'amazon']
batch_size = {'facebook': 256, 'reddit': 2048, 'amazon': 4096}
gap_methods = ['gap-inf', 'gap-edp', 'gap-ndp']
sage_methods = ['sage-inf', 'sage-edp', 'sage-ndp']
mlp_methods = ['mlp', 'mlp-dp']
inf_methods = ['gap-inf', 'sage-inf']
edp_methods = ['gap-edp', 'sage-edp', 'mlp']
ndp_methods = ['gap-ndp', 'sage-ndp', 'mlp-dp']
all_methods = inf_methods + edp_methods + ndp_methods
hparams = {dataset: {method: {} for method in all_methods} for dataset in datasets}
for dataset in datasets:
# For GAP methods
for method in gap_methods:
hparams[dataset][method]['encoder_layers'] = 2
hparams[dataset][method]['base_layers'] = 1
hparams[dataset][method]['head_layers'] = 1
hparams[dataset][method]['combine'] = 'cat'
hparams[dataset][method]['hops'] = [1, 2, 3, 4, 5]
# For SAGE methods
for method in sage_methods:
hparams[dataset][method]['base_layers'] = 2
hparams[dataset][method]['head_layers'] = 1
if method != 'sage-ndp':
hparams[dataset][method]['mp_layers'] = [1, 2, 3, 4, 5]
# For MLP methods
for method in mlp_methods:
hparams[dataset][method]['num_layers'] = 3
# For GAP-NDP and SAGE-NDP
for method in ['gap-ndp', 'sage-ndp']:
hparams[dataset][method]['max_degree'] = [100, 200, 300, 400]
# For all methods
for method in all_methods:
hparams[dataset][method]['hidden_dim'] = 16
hparams[dataset][method]['activation'] = 'selu'
hparams[dataset][method]['optimizer'] = 'adam'
hparams[dataset][method]['learning_rate'] = 0.01
hparams[dataset][method]['repeats'] = 10
if method in ndp_methods:
hparams[dataset][method]['max_grad_norm'] = 1
hparams[dataset][method]['epochs'] = 10
hparams[dataset][method]['batch_size'] = batch_size[dataset]
else:
hparams[dataset][method]['batch_norm'] = True
hparams[dataset][method]['epochs'] = 100
hparams[dataset][method]['batch_size'] = 'full'
# For GAP methods
for method in gap_methods:
hparams[dataset][method]['encoder_epochs'] = hparams[dataset][method]['epochs']
# ### Accuracy/Privacy Trade-off
for dataset in datasets:
for method in all_methods:
params = {}
if method in ndp_methods:
params['epsilon'] = [1, 2, 4, 8, 16]
elif method in ['gap-edp', 'sage-edp']:
params['epsilon'] = [0.1, 0.2, 0.5, 1, 2, 4, 8]
registry.register(
'train.py',
method,
dataset=dataset,
**params,
**hparams[dataset][method]
)
# ### Effect of Encoder
for dataset in datasets:
for method in ['gap-edp', 'gap-ndp']:
hp = {**hparams[dataset][method]}
default_encoder_layers = hp.pop('encoder_layers')
epsilon = [0.5, 1, 2, 4, 8] if method == 'gap-edp' else [1, 2, 4, 8, 16]
registry.register(
'train.py',
method,
dataset=dataset,
encoder_layers=[0, default_encoder_layers],
epsilon=epsilon,
**hp
)
# ### Effect of Hops
for dataset in datasets:
for method in ['gap-edp', 'gap-ndp']:
hp = {**hparams[dataset][method]}
hp.pop('hops')
hops = [1,2,3,4,5]
epsilon = [1, 2, 4, 8] if method == 'gap-edp' else [2, 4, 8, 16]
registry.register(
'train.py',
method,
dataset=dataset,
hops=hops,
epsilon=epsilon,
**hp
)
# ### Effect of Degree
for dataset in datasets:
method = 'gap-ndp'
hp = {**hparams[dataset][method]}
hp.pop('max_degree')
max_degree = [10,20,50,100,200,300,400]
epsilon = [2, 4, 8, 16]
registry.register(
'train.py',
method,
dataset=dataset,
max_degree=max_degree,
epsilon=epsilon,
**hp
)
return registry.job_list
def create_attack_commands(registry: WandBJobRegistry) -> list[str]:
# Hyperparameters
datasets = ['facebook', 'reddit', 'amazon']
gap_methods = ['gap-inf', 'gap-ndp']
sage_methods = ['sage-inf', 'sage-ndp']
mlp_methods = ['mlp', 'mlp-dp']
ndp_methods = ['gap-ndp', 'sage-ndp', 'mlp-dp']
all_methods = gap_methods + sage_methods + mlp_methods
hparams = {dataset: {method: {} for method in all_methods} for dataset in datasets}
for dataset in datasets:
# For GAP methods
for method in gap_methods:
hparams[dataset][method]['shadow_encoder_layers'] = 2
hparams[dataset][method]['shadow_base_layers'] = 1
hparams[dataset][method]['shadow_head_layers'] = 1
hparams[dataset][method]['shadow_combine'] = 'cat'
hparams[dataset][method]['shadow_hops'] = 2
# For SAGE methods
for method in sage_methods:
hparams[dataset][method]['shadow_base_layers'] = 2
hparams[dataset][method]['shadow_head_layers'] = 1
if method != 'sage-ndp':
hparams[dataset][method]['shadow_mp_layers'] = 2
# For MLP methods
for method in mlp_methods:
hparams[dataset][method]['shadow_num_layers'] = 3
# For GAP-NDP and SAGE-NDP
for method in ['gap-ndp', 'sage-ndp']:
hparams[dataset][method]['shadow_max_degree'] = 100
# For all methods
for method in all_methods:
hparams[dataset][method]['shadow_hidden_dim'] = 64
hparams[dataset][method]['shadow_activation'] = 'selu'
hparams[dataset][method]['shadow_optimizer'] = 'adam'
hparams[dataset][method]['shadow_learning_rate'] = 0.01
if method in ndp_methods:
hparams[dataset][method]['shadow_max_grad_norm'] = 1
hparams[dataset][method]['shadow_epochs'] = 10
hparams[dataset][method]['shadow_batch_size'] = 256
else:
hparams[dataset][method]['shadow_batch_norm'] = True
hparams[dataset][method]['shadow_epochs'] = 100
hparams[dataset][method]['shadow_batch_size'] = 'full'
if method != 'sage-ndp':
hparams[dataset][method]['shadow_val_interval'] = 0
if method in gap_methods:
hparams[dataset][method]['shadow_encoder_epochs'] = hparams[dataset][method]['shadow_epochs']
hparams[dataset][method]['num_nodes_per_class'] = 1000
hparams[dataset][method]['attack_hidden_dim'] = 64
hparams[dataset][method]['attack_num_layers'] = 3
hparams[dataset][method]['attack_activation'] = 'selu'
hparams[dataset][method]['attack_batch_norm'] = True
hparams[dataset][method]['attack_batch_size'] = 'full'
hparams[dataset][method]['attack_epochs'] = 100
hparams[dataset][method]['attack_optimizer'] = 'adam'
hparams[dataset][method]['attack_learning_rate'] = 0.01
hparams[dataset][method]['attack_val_interval'] = 1
hparams[dataset][method]['repeats'] = 10
for dataset in datasets:
for method in all_methods:
params = {}
if method in ndp_methods:
params['shadow_epsilon'] = [1, 2, 4, 8, 16]
registry.register(
'attack.py',
method,
'nmi',
dataset=dataset,
**params,
**hparams[dataset][method]
)
return registry.job_list
def generate(path: str):
"""Generate experiment job file.
Args:
path (str): Path to store job file.
"""
with open('wandb.yaml') as f:
wandb_config = yaml.safe_load(f)
registry_train = WandBJobRegistry(
entity=wandb_config['username'],
project=wandb_config['project']['train']
)
registry_attack = WandBJobRegistry(
entity=wandb_config['username'],
project=wandb_config['project']['attack']
)
with console.status('pulling jobs from WandB'):
registry_train.pull()
registry_attack.pull()
with console.status('generating job commands'):
train_commands = create_train_commands(registry_train)
attack_commands = create_attack_commands(registry_attack)
job_list = train_commands + attack_commands
console.info(f'{len(job_list)} jobs generated')
with console.status(f'saving jobs to {path}'):
registry_train.job_list = job_list
registry_train.save(path=path)
def run(job_file: str, scheduler_name: str) -> None:
"""Run jobs in parallel using a distributed job scheduler.
Args:
job_file (str): Path to the job file.
scheduler_name (str): Name of the scheduler to use.
"""
scheduler = JobScheduler(job_file=job_file, scheduler=scheduler_name)
scheduler.submit()
def main() -> None:
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument('--generate', action='store_true', help='Generate jobs')
parser.add_argument('--run', action='store_true', help='Run jobs')
parser.add_argument('--path', type=str, default='jobs/experiments.sh', help='Path to the job file')
parser.add_argument('--scheduler', type=str, default='sge', help='Job scheduler to use',
choices=JobScheduler.cluster_resolver.options)
args = parser.parse_args()
if args.generate:
generate(args.path)
if args.run:
run(job_file=args.path, scheduler_name=args.scheduler)
if not args.generate and not args.run:
parser.error('Please specify either --generate or --run')
if __name__ == '__main__':
main()