-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathddpg.jl
37 lines (31 loc) · 1.75 KB
/
ddpg.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Set yᵢ = rᵢ + γQ′(sᵢ₊₁, μ′(sᵢ₊₁ | θᵘ′) | θᶜ′)
function DDPG_target(π, 𝒫, 𝒟, γ::Float32; kwargs...)
𝒟[:r] .+ γ .* (1.f0 .- 𝒟[:done]) .* value(π, 𝒟[:sp], action(π, 𝒟[:sp]))
end
function smoothed_DDPG_target(π, 𝒫, 𝒟, γ::Float32; i)
ap, _ = exploration(𝒫[:π_smooth], 𝒟[:sp], π_on=π, i=i)
y = 𝒟[:r] .+ γ .* (1.f0 .- 𝒟[:done]) .* value(π, 𝒟[:sp], ap)
end
# ∇_θᵘ 𝐽 ≈ 1/𝑁 Σᵢ ∇ₐQ(s, a | θᶜ)|ₛ₌ₛᵢ, ₐ₌ᵤ₍ₛᵢ₎ ∇_θᵘ μ(s | θᵘ)|ₛᵢ
DDPG_actor_loss(π, 𝒫, 𝒟; info=Dict()) = -mean(value(π, 𝒟[:s], action(π, 𝒟[:s])))
# T. P. Lillicrap, et al., "Continuous control with deep reinforcement learning", ICLR 2016.
function DDPG(;π::ActorCritic,
ΔN=50,
π_explore=GaussianNoiseExplorationPolicy(0.1f0),
a_opt::NamedTuple=(;),
c_opt::NamedTuple=(;),
a_loss=DDPG_actor_loss,
c_loss=td_loss(),
target_fn=DDPG_target,
prefix="",
log::NamedTuple=(;),
π_smooth=GaussianNoiseExplorationPolicy(0.1f0, ϵ_min=-0.5f0, ϵ_max=0.5f0), kwargs...)
OffPolicySolver(;agent=PolicyParams(π=π, π_explore=π_explore, π⁻=deepcopy(π)),
ΔN=ΔN,
𝒫=(π_smooth=π_smooth,),
log=LoggerParams(;dir = "log/ddpg", log...),
a_opt=TrainingParams(;loss=a_loss, name=string(prefix, "actor_"), a_opt...),
c_opt=TrainingParams(;loss=c_loss, name=string(prefix, "critic_"), epochs=ΔN, c_opt...),
target_fn=target_fn,
kwargs...)
end