-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPPO_train.py
86 lines (71 loc) · 2.62 KB
/
PPO_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import gym
import myosuite
from stable_baselines3 import PPO
import os
import time
from gym.envs.registration import register
# from gymnasium.envs.registration import register
import numpy as np
from matplotlib import pyplot as plt
import datetime
import torch as th
import os
import skvideo.io
from plot import *
import os
current_dir = os.path.dirname(os.path.abspath(__file__))
# Register MyoSuite Envs
register(id='Relocate-v1',
entry_point='relocate_v1:RelocateEnvV1',
max_episode_steps=500,
kwargs={
'model_path': r'C:\Users\user\anaconda3\envs\myo\Lib\site-packages\myosuite\envs\myo\assets\arm\myoarm_relocate_v1.xml',
'normalize_act': True,
'frame_skip': 5,
'pos_th': 0.1, # cover entire base of the receptacle
'rot_th': np.inf, # ignore rotation errors
'target_xyz_range': {'high':[0.1, -.35, 1.2], 'low':[0.1, -.35, 1.2]},
'target_rxryrz_range': {'high':[0.0, 0.0, 0.0], 'low':[0.0, 0.0, 0.0]}
}
)
seed = 123
env = gym.make('Relocate-v1')
env.seed(seed)
env.reset()
env.sim.renderer.set_free_camera_settings()
nowtime = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M')
model_dir = os.path.join(current_dir, f"models/PPO-seed-{seed}-Time-{nowtime}")
loggir_dir = os.path.join(current_dir, f"logs/PPO-seed-{seed}-Time-{nowtime}")
train_test_dir = os.path.join(current_dir, f"train_test/PPO-seed-{seed}-Time-{nowtime}")
os.makedirs(model_dir, exist_ok=True)
os.makedirs(loggir_dir, exist_ok=True)
os.makedirs(train_test_dir, exist_ok=True)
model = PPO("MlpPolicy", env, verbose=1, tensorboard_log=loggir_dir, seed=seed)
TimeSteps = 200000
for i in range(1, 50):
model.learn(total_timesteps=TimeSteps, reset_num_timesteps=False)
save_dir = model_dir + "/PPO " + str(i * TimeSteps) + "_steps"
model.save(save_dir)
plotdir = f"{train_test_dir}/time_step_{i * TimeSteps}"
os.makedirs(plotdir, exist_ok=True)
pi = PPO.load(save_dir, env=env)
frames = []
done = False
state = env.reset()
done = False
MuscleExcitation = []
for _ in range(500):
frame = env.sim.renderer.render_offscreen(
width=400,
height=400,
camera_id=2)
frames.append(frame)
o = env.get_obs()
a = pi.predict(o, deterministic=True)[0]
MuscleExcitation.append(a)
next_o, r, done, info = env.step(a)
if done:
break
skvideo.io.vwrite(f'{plotdir}/Relocte.mp4', np.asarray(frames), outputdict={"-pix_fmt": "yuv420p"})
plot_and_save_muscle_excitation(MuscleExcitation, plotdir)
env.close()