-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhybrid_sim.m
44 lines (35 loc) · 1.18 KB
/
hybrid_sim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
function [data,latents] = hybrid_sim(param,data)
% One-dimensional Kalman filter.
% parameters
q = param(1); % reward variance
q1 = param(2);
q2 = param(3);
gamma = param(4); % uncertainty bonus
beta = param(5);
for n = 1:length(data.block)
% initialization at the start of each block
if n == 1 || data.block(n)~=data.block(n-1)
m = [0 0]; % posterior mean
s = [q1 q2]; % posterior variance
end
% choice
p = normcdf(beta*(m(1)-m(2))/(sqrt(s(1)+s(2))) + gamma*(sqrt(s(1))-sqrt(s(2)))); % choice probability
if rand < p
c = 1;
else
c = 2;
end
% feedback
r = data.R(n,c);
% store latents
latents.m(n,:) = m;
latents.s(n,:) = s;
latents.p(n,1) = p;
data.c(n,1) = c;
data.r(n,1) = r;
% update
k = s(c)/(s(c)+q); % Kalman gain
err = r - m(c); % prediction error
m(c) = m(c) + k*err; % posterior mean
s(c) = s(c) - k*s(c); % posterior variance
end