-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel_comparison.m
43 lines (38 loc) · 1.65 KB
/
model_comparison.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
function bms_results = model_comparison
for i = 1:2
if i==1
load results_sim1
data = load_data(1);
param = [10 10 0];
elseif i==2
load results_sim2
data = load_data(2);
param = [10 100 100];
end
for s = 1:length(data)
latents(s) = kalman_filter(param,data(s));
end
for j = 1:4
for s = 1:length(data)
X = [];
for n = 1:length(data(s).c)
if j==1 % UCB
X(n,:) = [latents(s).m(n,1)-latents(s).m(n,2) sqrt(latents(s).s(n,1))-sqrt(latents(s).s(n,2))];
elseif j==2 % Thompson
X(n,1) = (latents(s).m(n,1)-latents(s).m(n,2))./sqrt(sum(latents(s).s(n,:)));
elseif j==3 % Hybrid
X(n,:) = [(latents(s).m(n,1)-latents(s).m(n,2))./sqrt(sum(latents(s).s(n,:))) sqrt(latents(s).s(n,1))-sqrt(latents(s).s(n,2))];
elseif j==4 % Value-directed exploration
X(n,:) = latents(s).m(n,1)-latents(s).m(n,2);
end
end
c = data(s).c;
b = glmfit(X,c==1,'binomial','link','probit','constant','off');
y = glmval(b,X,'probit','constant','off');
L = sum(log(y(c==1))) + sum(log(1-y(c==2)));
bic(s,j) = -2*L + size(X,2)*log(n);
end
end
[bms_results(i).alpha,bms_results(i).exp_r,bms_results(i).xp,bms_results(i).pxp,bms_results(i).bor] = bms(-0.5*bic);
clear latents bic
end