-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfit_models_collins.m
92 lines (72 loc) · 2.36 KB
/
fit_models_collins.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
function [results, bms_results] = fit_models_collins(data,models,results)
% Fit Collins (2018) data. Requires mfit package.
if nargin < 2; models = 1:2; end
for s = 1:length(data)
trials = find(data(s).phase==0);
data(s).N = length(trials);
data(s).C = 3;
A = zeros(data(s).N,3);
for t = 1:data(s).N
if data(s).action(t)>0
A(t,data(s).action(t)) = 1;
end
end
for b = 1:max(data(s).learningblock)
ix = data(s).learningblock==b;
for i = 1:size(A,2)
A(ix,i) = eps + smooth(A(ix,i));
end
end
data(s).logPa = log(A./sum(A,2));
end
for m = models
disp(['... fitting model ',num2str(m)]);
switch m
case 1
param(1) = struct('name','b1','logpdf',@(x) 0);
param(2) = struct('name','b2','logpdf',@(x) 0);
param(3) = struct('name','lr','logpdf',@(x) 0);
param(4) = struct('name','tau','logpdf',@(x) 0);
fun = @lik_collins;
case 2
param(1) = struct('name','b1','logpdf',@(x) 0);
param(2) = struct('name','b2','logpdf',@(x) 0);
param(3) = struct('name','lr','logpdf',@(x) 0);
fun = @lik_collins;
end
results(m) = mfit_optimize(fun,param,data);
clear param
end
% Bayesian model selection
if nargout > 1
bms_results = mfit_bms(results,1);
end
end
function lik = lik_collins(x,data)
B = x(1:2);
lr = 1./(1+exp(-x(3)));
if length(x) > 3
tau = x(end);
else
tau = 1;
end
lik = 0;
for t = 1:data.N
if t==1 || data.learningblock(t)~=data.learningblock(t-1)
Q = zeros(data.ns(t),3);
end
a = data.action(t);
s = data.state(t);
r = data.reward(t);
if a > 0
if data.ns(t)==3
b = B(1);
else
b = B(2);
end
d = b*Q(data.state(t),:) + tau*data.logPa(t,:);
lik = lik + d(a) - logsumexp(d,2);
Q(s,a) = Q(s,a) + lr*(r-Q(s,a));
end
end
end