forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
controller.py
600 lines (499 loc) · 24.8 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
# Copyright 2024 The Orbit Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Provides a `Controller` class for managing the outer training loop."""
import pprint
import time
from typing import Callable, Iterable, Optional, Union
from absl import logging
from orbit import runner
from orbit import utils
import tensorflow as tf, tf_keras
# pylint: disable=g-direct-tensorflow-import
from tensorflow.python.eager import monitoring
# pylint: enable=g-direct-tensorflow-import
_orbit_api_gauge = monitoring.BoolGauge(
"/tensorflow/api/orbit", "orbit api usage"
)
def _log(message: str):
"""Logs `message` to the `info` log, and also prints to stdout."""
logging.info(message)
print(message)
logging.ABSLLogger.register_frame_to_skip(__file__, _log.__name__)
def _format_output(output, indent=4):
"""Formats `output`, either on one line, or indented across multiple lines."""
formatted = pprint.pformat(output)
lines = formatted.splitlines()
if len(lines) == 1:
return formatted
lines = [" " * indent + line for line in lines]
return "\n" + "\n".join(lines)
Action = Callable[[runner.Output], None]
class Controller:
"""Class that controls the outer loop of model training and evaluation.
Orbit divides training and evaluation into "inner" and "outer" loops. Inner
loops are implemented by users in the form of `AbstractTrainer` and
`AbstractEvaluator` subclasses, and define how to run a given number of
training or evaluation steps. The outer loop is provided by this `Controller`,
and interleaves calls to the user-provided inner loops with additional actions
such as saving checkpoints, running evaluations, writing summaries, as well as
(optionally) user provided `Action`s (see below).
There are four top-level "outer loops" provided:
- `train`, which trains until a specified number of global steps is reached;
- `evaluate`, for one-off model evaluation;
- `train_and_evaluate`, for interleaved training and evaluation;
- `evaluate_continuously`, for monitoring a given directory and running
evaluations on new model checkpoints.
While this class attempts to provide out-of-the-box solutions for common
training and evaluation use cases, the internal details and method
implementations are also intended to be simple enough to make subclassing or
other custom outer loop implementations easy to achieve.
Some additional customization can be achieved by supplying `train_actions` or
`eval_actions` when constructing the `Controller`. Actions arbitrary callables
that are applied by the `Controller` to the output of train steps (after each
inner loop of `steps_per_loop` steps) or an evaluation. This provides a hook
mechanism, enabling things like reporting metrics to Vizier, model exporting,
additional logging, etc. See the `orbit.actions` package for a small handful
of predefined actions and some utility classes that may be useful in defining
your own.
"""
def __init__(
self,
*, # Makes all args keyword only.
global_step: tf.Variable,
trainer: Optional[runner.AbstractTrainer] = None,
evaluator: Optional[runner.AbstractEvaluator] = None,
strategy: Optional[tf.distribute.Strategy] = None,
# Actions
train_actions: Optional[Iterable[Action]] = None,
eval_actions: Optional[Iterable[Action]] = None,
# Train related
steps_per_loop: Optional[Union[int, Callable[[int], int]]] = None,
checkpoint_manager: Optional[tf.train.CheckpointManager] = None,
enable_async_checkpointing: bool = False,
# Summary related
summary_interval: Optional[int] = None,
summary_dir: Optional[str] = None,
# Evaluation related
eval_summary_dir: Optional[str] = None,
summary_manager: Optional[utils.SummaryManagerInterface] = None,
eval_summary_manager: Optional[utils.SummaryManagerInterface] = None):
"""Initializes a `Controller` instance.
Note that if `checkpoint_manager` is provided and there are checkpoints in
the associated model directory, the model will be restored from the most
recent checkpoint during this `__init__` method.
Args:
global_step: An integer `tf.Variable` storing the global training step
number. Usually this can be obtained from the `iterations` property of
the model's optimizer (e.g. `trainer.optimizer.iterations`). In cases
where multiple optimizers are used, or if one model "step" corresponds
to more than one update to model parameters, users can create and
increment their own global step variable as well. In this case it is
recommended to create the `tf.Variable` inside the distribution strategy
scope, with `aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA` (see
also `orbit.utils.create_global_step()`).
trainer: An instance of `orbit.AbstractTrainer`, which implements the
inner training loop.
evaluator: An instance of `orbit.AbstractEvaluator`, which implements
evaluation.
strategy: An instance of `tf.distribute.Strategy`. If not provided, the
strategy will be initialized from the current in-scope strategy using
`tf.distribute.get_strategy()`.
train_actions: Optional `orbit.Action`s to call after each block of
`steps_per_loop` training steps are run. These will be called with the
output of `trainer.train`.
eval_actions: Optional `orbit.Action`s to call after each evaluation.
These will be called with the output of `evaluator.evaluate`.
steps_per_loop: Optional integer to indicate the number of steps to run in
each inner loop of training (passed as the `num_steps` parameter of
`trainer.train`). It can be also a callable which takes the current
global step value as input and returns the number of steps to run as
output.
checkpoint_manager: An instance of `tf.train.CheckpointManager`. If
provided and there are checkpoints in the associated model directory,
the model will be restored from the most recent checkpoint inside this
`__init__` method. If not provided, the `Controller` will not
automatically save to or restore from checkpoints.
enable_async_checkpointing: Optional bool indicating whether to enable
async checkpoint saving.
summary_interval: Step interval for training summaries. Note that this
argument only applies to `tf.summary` calls inside the `trainer.train`
function. Summaries written by the `Controller` (specifically
"steps_per_second" and output from the `trainer.train` method) will
always be enabled unless the `summary_dir` parameter is `None`. If set,
the value must be divisible by `steps_per_loop`.
summary_dir: The directory to write summaries to. To use the same
directory as for checkpointing, pass `checkpoint_manager.directory`. If
`None`, no training summaries will be written.
eval_summary_dir: The directory to write eval summaries to. If `None`, it
will be set to `summary_dir`. If both `summary_dir` and
`eval_summary_dir` are `None`, no eval summaries will be written.
summary_manager: Instance of the summary manager. If set, the
`summary_dir` will be ignored. Otherwise the summary manager will be
created internally for TensorBoard summaries by default from the
`summary_dir`.
eval_summary_manager: Instance of the eval summary manager. If set, the
`eval_summary_dir` will be ignored. Otherwise the eval summary manager
will be created internally for TensorBoard summaries by default from the
`eval_summary_dir`.
Raises:
ValueError: If both `trainer` and `evaluator` are `None`.
ValueError: If `steps_per_loop` is not a positive integer or a callable.
ValueError: If `summary_interval` is not a positive integer or is not
divisible by `steps_per_loop`.
"""
if trainer is None and evaluator is None:
raise ValueError("`trainer` and `evaluator` should not both be `None`.")
if trainer is not None:
if steps_per_loop is None:
raise ValueError(
"`steps_per_loop` is required when `trainer` is provided.")
elif not callable(steps_per_loop) and (
not isinstance(steps_per_loop, int) or steps_per_loop < 1):
raise ValueError(
f"`steps_per_loop` ({steps_per_loop}) must be a positive integer "
"or a callable.")
if summary_interval is not None:
if summary_interval <= 0:
raise ValueError(
f"`summary_interval` ({summary_interval}) must be larger than 0.")
elif not callable(steps_per_loop) and (summary_interval % steps_per_loop
!= 0):
raise ValueError(
f"`summary interval` ({summary_interval}) must be a multiple "
f"of `steps_per_loop` ({steps_per_loop}).")
if not isinstance(global_step, tf.Variable):
raise ValueError("`global_step` must be a `tf.Variable`.")
self.trainer = trainer
self.evaluator = evaluator
self.strategy = strategy or tf.distribute.get_strategy()
self.train_actions = () if train_actions is None else tuple(train_actions)
self.eval_actions = () if eval_actions is None else tuple(eval_actions)
self.global_step = global_step
self.checkpoint_manager = checkpoint_manager
self._enable_async_checkpoint_saving = enable_async_checkpointing
self._checkpoint_options = tf.train.CheckpointOptions(
enable_async=enable_async_checkpointing
)
if self.trainer is not None:
self.step_timer = None
self.summary_interval = summary_interval
if summary_manager:
self.summary_manager = summary_manager
else:
self.summary_manager = utils.SummaryManager(
summary_dir, tf.summary.scalar, global_step=self.global_step)
self._steps_per_loop = steps_per_loop
if self.evaluator is not None:
eval_summary_dir = eval_summary_dir or summary_dir
if eval_summary_dir == summary_dir and self.trainer is not None:
# Reuse the summary writer if train and evaluation summary directory
# are the same.
self.eval_summary_manager = self.summary_manager
else:
if eval_summary_manager:
self.eval_summary_manager = eval_summary_manager
else:
self.eval_summary_manager = utils.SummaryManager(
eval_summary_dir, tf.summary.scalar, global_step=self.global_step)
tf.summary.experimental.set_step(self.global_step)
# Restores the model if needed.
if self.checkpoint_manager is not None:
restored_path = self.restore_checkpoint()
if restored_path:
_log(f"restored from checkpoint: {restored_path}")
# Set Orbit framework gauge to True value
_orbit_api_gauge.get_cell().set(True)
def train(self, steps: int, checkpoint_at_completion: bool = True):
"""Runs training until the specified global step count has been reached.
This method makes calls to `self.trainer.train()` until the global step
count is equal to `steps`. It will additionally save checkpoints (if a
`CheckpointManager` was passed to `Controller.__init__`) and summarize
training output (if `summary_dir` is set).
When async checkpointing is enabled, a sync is triggered at the end of this
method to make sure any ongoing async checkpoint saving is finished before
returning.
Args:
steps: The global step count to train up to.
checkpoint_at_completion: Whether to save a checkpoint when this method
returns (regardless of the checkpointing interval). Defaults to `True`.
"""
self._require("trainer", for_method="train")
# TODO(momernick): Support steps=None or -1 (training to exhaustion).
current_step = self.global_step.numpy() # Cache, since this is expensive.
_log(f"train | step: {current_step: 6d} | training until step {steps}...")
while current_step < steps:
# Calculates steps to run for the next train loop.
num_steps = min(steps - current_step, self.steps_per_loop)
self._train_n_steps(num_steps)
self._maybe_save_checkpoint()
current_step = self.global_step.numpy()
if checkpoint_at_completion:
self._maybe_save_checkpoint(check_interval=False)
self._sync_on_async_checkpointing()
def evaluate(self, steps: int = -1) -> Optional[runner.Output]:
"""Runs evaluation for the given number of steps.
This method calls `self.evaluator.evaluate(steps)`, then writes the returned
summaries (if any).
Args:
steps: The number of evaluation steps to run. The value `-1` is reserved
as a special sentinel to indicate a "complete" evaluation that runs
until the underlying dataset is exhausted. Support for this is dependent
on the specific `evaluator` being used.
Returns:
The evaluation results as a dictionary mapping names to NumPy values.
Raises:
ValueError: If `evaluator` was not provided to `Controller.__init__`.
ValueError: If no checkpoint is present in `checkpoint_manager.directory`.
ValueError: If `steps` is not a positive value or -1.
"""
self._require("evaluator", for_method="evaluate")
if steps > 0:
steps_msg = f"running {steps} steps of evaluation..."
elif steps == -1:
steps_msg = "running complete evaluation..."
else:
raise ValueError(f"`steps` ({steps}) should be > 0, or == -1.")
current_step = self.global_step.numpy()
_log(f" eval | step: {current_step: 6d} | {steps_msg}")
start = time.time()
assert isinstance(self.evaluator, runner.AbstractEvaluator)
with self.eval_summary_manager.summary_writer().as_default():
steps_tensor = tf.convert_to_tensor(steps, dtype=tf.int32)
eval_output = self.evaluator.evaluate(steps_tensor)
elapsed = time.time() - start
eval_output = eval_output or {}
for action in self.eval_actions:
action(eval_output)
eval_output = tf.nest.map_structure(utils.get_value, eval_output)
if steps > 0:
# Only log if steps has been specified.
steps_per_second = steps / elapsed
eval_output["steps_per_second"] = steps_per_second
steps_per_second_log = f"steps/sec: {steps_per_second: 6.1f} | "
else:
steps_per_second_log = ""
_log(f" eval | step: {current_step: 6d} | "
f"{steps_per_second_log}"
f"eval time: {elapsed: 6.1f} sec | "
f"output: {_format_output(eval_output)}")
self.eval_summary_manager.write_summaries(eval_output)
self.eval_summary_manager.flush()
return eval_output
def train_and_evaluate(
self,
train_steps: int,
eval_steps: int = -1,
eval_interval: Optional[int] = None,
) -> Optional[runner.Output]:
"""Runs interleaved training and evaluation.
This method interleaves calls to `self.train()` and `self.evaluate()`,
training the model until the global step count equals `train_steps`, and
running an evaluation for `eval_steps` every `eval_interval` training steps.
In addition, this method will run a final evaluation at the end of the
training sequence.
When async checkpointing is enabled, a sync is triggered at the end of this
method to make sure any ongoing async checkpoint saving is finished before
returning.
Args:
train_steps: The global step count to train up to.
eval_steps: The number of steps to run during an evaluation. If -1, this
method will evaluate over the entire evaluation dataset.
eval_interval: The number of training steps to run between evaluations. If
set, training will always stop every `eval_interval` steps, even if this
results in a shorter inner loop than specified by `steps_per_loop`
setting. If None, evaluation will only be performed after training is
complete.
Returns:
The evaluation results as a dictionary mapping names to NumPy values.
"""
self._require("trainer", for_method="train_and_evaluate")
self._require("evaluator", for_method="train_and_evaluate")
output = None
current_step = self.global_step.numpy() # Cache, since this is expensive.
eval_interval = eval_interval or (train_steps - current_step)
while current_step < train_steps:
interval = min(train_steps - current_step, eval_interval)
num_steps = current_step + interval
self.train(steps=num_steps, checkpoint_at_completion=False)
output = self.evaluate(steps=eval_steps)
current_step = self.global_step.numpy()
self._maybe_save_checkpoint(check_interval=False)
self._sync_on_async_checkpointing()
return output
def evaluate_continuously(
self,
steps: int = -1,
timeout: Optional[Union[int, float]] = None,
timeout_fn: Optional[Callable[[], bool]] = None,
) -> Optional[runner.Output]:
"""Continuously monitors a directory and evaluates new checkpoints in it.
This method continuously monitors a directory as specified by this
Controller's CheckpointManager init arg and runs evaluation on the
checkpoints found there.
Args:
steps: The number of steps to run when evaluating. If -1, this method will
evaluate over the entire evaluation dataset.
timeout: The maximum number of seconds to wait between checkpoints. See
tf.train.checkpoints_iterator documentation.
timeout_fn: Optional callable to call after a timeout. If the function
returns True, then it means that no new checkpoints will be generated
and the iterator will exit.
Returns:
The evaluation results as a dictionary mapping names to NumPy values.
Raises:
ValueError: If no checkpoint found in `self.checkpoint_manager.directory`.
ValueError: If `evaluator` was not provided as a controller init arg.
"""
self._require("evaluator", for_method="evaluate_continuously")
self._require("checkpoint_manager", for_method="evaluate_continuously")
output = None
assert isinstance(self.checkpoint_manager, tf.train.CheckpointManager)
for checkpoint_path in tf.train.checkpoints_iterator(
self.checkpoint_manager.directory,
timeout=timeout,
timeout_fn=timeout_fn):
self.restore_checkpoint(checkpoint_path)
output = self.evaluate(steps)
return output
def restore_checkpoint(self, checkpoint_path: Optional[str] = None):
"""Restores the model from a checkpoint.
Args:
checkpoint_path: An optional string specifying the checkpoint path to
restore from. If `None`, will restore from the most recent checkpoint
(or initialize the model using a custom `init_fn` if no checkpoints can
be found) using `self.checkpoint_manager.restore_or_initialize()`.
Returns:
The path to the restored checkpoint if a restore happened, or `None` if no
restore occurred.
"""
self._require("checkpoint_manager", for_method="restore_checkpoint")
assert isinstance(self.checkpoint_manager, tf.train.CheckpointManager)
with self.strategy.scope():
# Checkpoint restoring should be inside scope (b/139450638).
if checkpoint_path is not None:
_log(f"restoring model from {checkpoint_path}...")
self.checkpoint_manager.checkpoint.restore(checkpoint_path)
else:
_log("restoring or initializing model...")
checkpoint_path = self.checkpoint_manager.restore_or_initialize()
if checkpoint_path is not None:
_log(f"restored model from {checkpoint_path}.")
return checkpoint_path
def save_checkpoint(self):
"""Saves the model to a checkpoint.
This method will save a checkpoint containing the current state of the
model.
Raises:
ValueError: If no `checkpoint_manager` was provided to
`Controller.__init__`.
"""
self._require("checkpoint_manager", for_method="save_checkpoint")
self._maybe_save_checkpoint(check_interval=False)
@property
def steps_per_loop(self):
"""Returns current steps_per_loop value in a training loop."""
if callable(self._steps_per_loop):
return self._steps_per_loop(self.global_step.numpy())
return self._steps_per_loop
def _train_n_steps(self, num_steps: int):
"""Runs training for `num_steps` steps.
Also prints/logs updates about training progress, and summarizes training
output (if output is returned from `self.trainer.train()`, and if
`self.summary_dir` is set).
Args:
num_steps: An integer specifying how many steps of training to run.
Raises:
RuntimeError: If `global_step` is not properly incremented by `num_steps`
after calling `self.trainer.train(num_steps)`.
"""
if not self.step_timer:
self.step_timer = StepTimer(self.global_step)
current_step = self.global_step.numpy()
with self.summary_manager.summary_writer().as_default():
should_record = False # Allows static optimization in no-summary cases.
if self.summary_interval:
# Create a predicate to determine when summaries should be written.
should_record = lambda: (self.global_step % self.summary_interval == 0)
assert isinstance(self.trainer, runner.AbstractTrainer)
with tf.summary.record_if(should_record):
num_steps_tensor = tf.convert_to_tensor(num_steps, dtype=tf.int32)
train_output = self.trainer.train(num_steps_tensor)
# Verify that global_step was updated properly, then update current_step.
expected_step = current_step + num_steps
if self.global_step.numpy() != expected_step:
message = (
f"`trainer.train({num_steps})` did not update `global_step` by "
f"{num_steps}. Old value was {current_step}, expected updated value "
f"to be {expected_step}, but it was {self.global_step.numpy()}.")
logging.warning(message)
train_output = train_output or {}
for action in self.train_actions:
action(train_output)
train_output = tf.nest.map_structure(utils.get_value, train_output)
current_step = self.global_step.numpy()
steps_per_second = self.step_timer.steps_per_second()
_log(f"train | step: {current_step: 6d} | "
f"steps/sec: {steps_per_second: 6.1f} | "
f"output: {_format_output(train_output)}")
train_output["steps_per_second"] = steps_per_second
self.summary_manager.write_summaries(train_output)
self.summary_manager.flush()
def _maybe_save_checkpoint(self, check_interval: bool = True):
"""Conditionally saves a checkpoint.
A checkpoint is saved if a `CheckpointManager` is available, and if the
required number of steps has elapsed since the last checkpoint was saved
(although this condition can be disabled by setting `check_interval=False`).
Args:
check_interval: Whether to check if the checkpoint interval has fully
elapsed. If `False`, a checkpoint is saved regardless of the elapsed
steps since the most recent checkpoint, unless no `checkpoint_manager`
was provided to `Controller.__init__`.
Returns:
A boolean indicating whether a checkpoint was saved.
"""
if self.checkpoint_manager and self.checkpoint_manager.checkpoint_interval:
ckpt_path = self.checkpoint_manager.save(
checkpoint_number=self.global_step.numpy(),
check_interval=check_interval,
options=self._checkpoint_options)
if ckpt_path is not None:
_log(f"saved checkpoint to {ckpt_path}.")
return True
return False
def _require(self, attribute, for_method):
"""Utility method to raise an error if the given `attribute` is not set."""
if getattr(self, attribute, None) is None:
raise ValueError(
f"`{attribute}` is not set. Pass `{attribute}` to "
f"`Controller.__init__` before calling `{for_method}()`.")
def _sync_on_async_checkpointing(self):
"""Force to wait for the async checkpoint saving (if any) to finish."""
# pylint: disable=protected-access
if self.checkpoint_manager:
logging.info("Sync on async checkpoint saving.")
self.checkpoint_manager.sync()
class StepTimer:
"""Utility class for measuring steps/second."""
def __init__(self, step):
self.step = step
self.start()
def start(self):
self.last_iteration = self.step.numpy()
self.last_time = time.time()
def steps_per_second(self, restart=True):
value = ((self.step.numpy() - self.last_iteration) /
(time.time() - self.last_time))
if restart:
self.start()
return value