This repository has been archived by the owner on May 2, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
detect.py
135 lines (106 loc) · 5.03 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from __future__ import division
from models import *
from utils.utils import *
from utils.datasets import *
import os
import sys
import time
import datetime
import argparse
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.ticker import NullLocator
parser = argparse.ArgumentParser()
parser.add_argument('--image_folder', type=str, default='data/samples', help='path to dataset')
parser.add_argument('--config_path', type=str, default='config/yolov3.cfg', help='path to model config file')
parser.add_argument('--weights_path', type=str, default='weights/yolov3.weights', help='path to weights file')
parser.add_argument('--class_path', type=str, default='data/coco.names', help='path to class label file')
parser.add_argument('--conf_thres', type=float, default=0.8, help='object confidence threshold')
parser.add_argument('--nms_thres', type=float, default=0.4, help='iou thresshold for non-maximum suppression')
parser.add_argument('--batch_size', type=int, default=1, help='size of the batches')
parser.add_argument('--n_cpu', type=int, default=8, help='number of cpu threads to use during batch generation')
parser.add_argument('--img_size', type=int, default=416, help='size of each image dimension')
parser.add_argument('--use_cuda', type=bool, default=True, help='whether to use cuda if available')
opt = parser.parse_args()
print(opt)
cuda = torch.cuda.is_available() and opt.use_cuda
os.makedirs('output', exist_ok=True)
# Set up model
model = Darknet(opt.config_path, img_size=opt.img_size)
model.load_weights(opt.weights_path)
if cuda:
model.cuda()
model.eval() # Set in evaluation mode
dataloader = DataLoader(ImageFolder(opt.image_folder, img_size=opt.img_size),
batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu)
classes = load_classes(opt.class_path) # Extracts class labels from file
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
imgs = [] # Stores image paths
img_detections = [] # Stores detections for each image index
print ('\nPerforming object detection:')
prev_time = time.time()
for batch_i, (img_paths, input_imgs) in enumerate(dataloader):
# Configure input
input_imgs = Variable(input_imgs.type(Tensor))
# Get detections
with torch.no_grad():
detections = model(input_imgs)
detections = non_max_suppression(detections, 80, opt.conf_thres, opt.nms_thres)
# Log progress
current_time = time.time()
inference_time = datetime.timedelta(seconds=current_time - prev_time)
prev_time = current_time
print ('\t+ Batch %d, Inference Time: %s' % (batch_i, inference_time))
# Save image and detections
imgs.extend(img_paths)
img_detections.extend(detections)
# Bounding-box colors
cmap = plt.get_cmap('tab20b')
colors = [cmap(i) for i in np.linspace(0, 1, 20)]
print ('\nSaving images:')
# Iterate through images and save plot of detections
for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):
print ("(%d) Image: '%s'" % (img_i, path))
# Create plot
img = np.array(Image.open(path))
plt.figure()
fig, ax = plt.subplots(1)
ax.imshow(img)
# The amount of padding that was added
pad_x = max(img.shape[0] - img.shape[1], 0) * (opt.img_size / max(img.shape))
pad_y = max(img.shape[1] - img.shape[0], 0) * (opt.img_size / max(img.shape))
# Image height and width after padding is removed
unpad_h = opt.img_size - pad_y
unpad_w = opt.img_size - pad_x
# Draw bounding boxes and labels of detections
if detections is not None:
unique_labels = detections[:, -1].cpu().unique()
n_cls_preds = len(unique_labels)
bbox_colors = random.sample(colors, n_cls_preds)
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
print ('\t+ Label: %s, Conf: %.5f' % (classes[int(cls_pred)], cls_conf.item()))
# Rescale coordinates to original dimensions
box_h = ((y2 - y1) / unpad_h) * img.shape[0]
box_w = ((x2 - x1) / unpad_w) * img.shape[1]
y1 = ((y1 - pad_y // 2) / unpad_h) * img.shape[0]
x1 = ((x1 - pad_x // 2) / unpad_w) * img.shape[1]
color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
# Create a Rectangle patch
bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=2,
edgecolor=color,
facecolor='none')
# Add the bbox to the plot
ax.add_patch(bbox)
# Add label
plt.text(x1, y1, s=classes[int(cls_pred)], color='white', verticalalignment='top',
bbox={'color': color, 'pad': 0})
# Save generated image with detections
plt.axis('off')
plt.gca().xaxis.set_major_locator(NullLocator())
plt.gca().yaxis.set_major_locator(NullLocator())
plt.savefig('output/%d.png' % (img_i), bbox_inches='tight', pad_inches=0.0)
plt.close()