This repository has been archived by the owner on May 2, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
test.py
165 lines (127 loc) · 6.16 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from __future__ import division
from models import *
from utils.utils import *
from utils.datasets import *
from utils.parse_config import *
import os
import sys
import time
import datetime
import argparse
import tqdm
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision import transforms
from torch.autograd import Variable
import torch.optim as optim
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", type=int, default=16, help="size of each image batch")
parser.add_argument("--model_config_path", type=str, default="config/yolov3.cfg", help="path to model config file")
parser.add_argument("--data_config_path", type=str, default="config/coco.data", help="path to data config file")
parser.add_argument("--weights_path", type=str, default="weights/yolov3.weights", help="path to weights file")
parser.add_argument("--class_path", type=str, default="data/coco.names", help="path to class label file")
parser.add_argument("--iou_thres", type=float, default=0.5, help="iou threshold required to qualify as detected")
parser.add_argument("--conf_thres", type=float, default=0.5, help="object confidence threshold")
parser.add_argument("--nms_thres", type=float, default=0.45, help="iou thresshold for non-maximum suppression")
parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension")
parser.add_argument("--use_cuda", type=bool, default=True, help="whether to use cuda if available")
opt = parser.parse_args()
print(opt)
cuda = torch.cuda.is_available() and opt.use_cuda
# Get data configuration
data_config = parse_data_config(opt.data_config_path)
test_path = data_config["valid"]
num_classes = int(data_config["classes"])
# Initiate model
model = Darknet(opt.model_config_path)
model.load_weights(opt.weights_path)
if cuda:
model = model.cuda()
model.eval()
# Get dataloader
dataset = ListDataset(test_path)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, shuffle=False, num_workers=opt.n_cpu)
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
print("Compute mAP...")
all_detections = []
all_annotations = []
for batch_i, (_, imgs, targets) in enumerate(tqdm.tqdm(dataloader, desc="Detecting objects")):
imgs = Variable(imgs.type(Tensor))
with torch.no_grad():
outputs = model(imgs)
outputs = non_max_suppression(outputs, 80, conf_thres=opt.conf_thres, nms_thres=opt.nms_thres)
for output, annotations in zip(outputs, targets):
all_detections.append([np.array([]) for _ in range(num_classes)])
if output is not None:
# Get predicted boxes, confidence scores and labels
pred_boxes = output[:, :5].cpu().numpy()
scores = output[:, 4].cpu().numpy()
pred_labels = output[:, -1].cpu().numpy()
# Order by confidence
sort_i = np.argsort(scores)
pred_labels = pred_labels[sort_i]
pred_boxes = pred_boxes[sort_i]
for label in range(num_classes):
all_detections[-1][label] = pred_boxes[pred_labels == label]
all_annotations.append([np.array([]) for _ in range(num_classes)])
if any(annotations[:, -1] > 0):
annotation_labels = annotations[annotations[:, -1] > 0, 0].numpy()
_annotation_boxes = annotations[annotations[:, -1] > 0, 1:]
# Reformat to x1, y1, x2, y2 and rescale to image dimensions
annotation_boxes = np.empty_like(_annotation_boxes)
annotation_boxes[:, 0] = _annotation_boxes[:, 0] - _annotation_boxes[:, 2] / 2
annotation_boxes[:, 1] = _annotation_boxes[:, 1] - _annotation_boxes[:, 3] / 2
annotation_boxes[:, 2] = _annotation_boxes[:, 0] + _annotation_boxes[:, 2] / 2
annotation_boxes[:, 3] = _annotation_boxes[:, 1] + _annotation_boxes[:, 3] / 2
annotation_boxes *= opt.img_size
for label in range(num_classes):
all_annotations[-1][label] = annotation_boxes[annotation_labels == label, :]
average_precisions = {}
for label in range(num_classes):
true_positives = []
scores = []
num_annotations = 0
for i in tqdm.tqdm(range(len(all_annotations)), desc=f"Computing AP for class '{label}'"):
detections = all_detections[i][label]
annotations = all_annotations[i][label]
num_annotations += annotations.shape[0]
detected_annotations = []
for *bbox, score in detections:
scores.append(score)
if annotations.shape[0] == 0:
true_positives.append(0)
continue
overlaps = bbox_iou_numpy(np.expand_dims(bbox, axis=0), annotations)
assigned_annotation = np.argmax(overlaps, axis=1)
max_overlap = overlaps[0, assigned_annotation]
if max_overlap >= opt.iou_thres and assigned_annotation not in detected_annotations:
true_positives.append(1)
detected_annotations.append(assigned_annotation)
else:
true_positives.append(0)
# no annotations -> AP for this class is 0
if num_annotations == 0:
average_precisions[label] = 0
continue
true_positives = np.array(true_positives)
false_positives = np.ones_like(true_positives) - true_positives
# sort by score
indices = np.argsort(-np.array(scores))
false_positives = false_positives[indices]
true_positives = true_positives[indices]
# compute false positives and true positives
false_positives = np.cumsum(false_positives)
true_positives = np.cumsum(true_positives)
# compute recall and precision
recall = true_positives / num_annotations
precision = true_positives / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps)
# compute average precision
average_precision = compute_ap(recall, precision)
average_precisions[label] = average_precision
print("Average Precisions:")
for c, ap in average_precisions.items():
print(f"+ Class '{c}' - AP: {ap}")
mAP = np.mean(list(average_precisions.values()))
print(f"mAP: {mAP}")