-
Notifications
You must be signed in to change notification settings - Fork 8
/
OptimizedDataGenerator.py
449 lines (374 loc) · 18 KB
/
OptimizedDataGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
# python imports
import tensorflow as tf
from qkeras import quantized_bits
from typing import Union, List, Tuple
import glob
import numpy as np
import pandas as pd
import math
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor, as_completed
from tqdm import tqdm
import os
import datetime
import random
import logging
import gc
import utils
# custom quantizer
# @tf.function
def QKeras_data_prep_quantizer(data, bits=4, int_bits=0, alpha=1):
"""
Applies QKeras quantization.
Args:
data (tf.Tensor): Input data (tf.Tensor).
bits (int): Number of bits for quantization.
int_bits (int): Number of integer bits.
alpha (float): (don't change)
Returns::
tf.Tensor: Quantized data (tf.Tensor).
"""
quantizer = quantized_bits(bits, int_bits, alpha=alpha)
return quantizer(data)
class OptimizedDataGenerator(tf.keras.utils.Sequence):
def __init__(self,
data_directory_path: str = "./",
labels_directory_path: str = "./",
is_directory_recursive: bool = False,
file_type: str = "csv",
data_format: str = "2D",
batch_size: int = 32,
file_count = None,
labels_list: Union[List,str] = "cotAlpha",
to_standardize: bool = False,
input_shape: Tuple = (13,21),
transpose = None,
include_y_local: bool = False,
files_from_end = False,
shuffle=False,
current=False,
sample_delta_t=200,
# Added in Optimized datagenerators
load_from_tfrecords_dir: str = None,
tfrecords_dir: str = None,
use_time_stamps = -1,
seed: int = None,
quantize: bool = False,
max_workers: int = 1,
**kwargs,
):
super().__init__()
"""
Data Generator to streamline data input to the network direct from the directory.
Args:
data_directory_path:
labels_directory_path:
is_directory_recursive:
file_type: Default: "csv"
Adapt the data loader according to file type. For now, it only supports csv and parquet file formats.
data_format: Default: 2D
Used to refer to the relevant "recon" files, 2D for 2D pixel array, 3D for time series input,
batch_size: Default: 32
The no. of data points to be included in a single batch.
file_count: Default: None
To limit the no. of .csv files to be used for training.
If set to None, all files will be considered as legitimate inputs.
labels_list: Default: "cotAlpha"
Input column name or list of column names to be used as label input to the neural network.
to_standardize: If set to True, it ensures that batches are normalized prior to being used as inputs
for training.
Default: False
input_shape: Default: (13,21) for image input to a 2D feedforward neural network.
To reshape the input array per the requirements of the network training.
current: Default False, calculate the current instead of the integrated charge
sample_delta_t: how long an "ADC bin" is in picoseconds
load_from_tfrecords_dir: Directory to load prepared data from TFRecords.
tfrecords_dir: Directory to save TFRecords.
use_time_stamps: which of the 20 time stamps to train on. default -1 is to train on all of them
seed: Random seed for shuffling.
quantize: Whether to quantize the data.
"""
# decide on which time stamps to load
self.use_time_stamps = np.arange(0,20) if use_time_stamps == -1 else use_time_stamps
len_xy, ntime = 13*21, 20
idx = [[i*(len_xy),(i+1)*(len_xy)] for i in range(ntime)] # 20 time stamps of length 13*21
self.use_time_stamps = np.array([ np.arange(idx[i][0], idx[i][1]).astype("str") for i in self.use_time_stamps]).flatten().tolist()
if use_time_stamps != -1 and data_format != '2D':
assert len(use_time_stamps) == input_shape[0]
self.max_workers = max_workers
self.shuffle = shuffle
if shuffle:
self.seed = seed if seed is not None else 13
self.rng = np.random.default_rng(seed = self.seed)
if file_type not in ["csv", "parquet"]:
raise ValueError("file_type can only be \"csv\" or \"parquet\"!")
self.file_type = file_type
self.recon_files = glob.glob(
data_directory_path + "recon" + data_format + "*." + file_type,
recursive=is_directory_recursive
)
self.recon_files.sort()
if file_count != None:
if not files_from_end:
self.recon_files = self.recon_files[:file_count]
else:
self.recon_files = self.recon_files[-file_count:]
self.label_files = [
labels_directory_path + recon_file.split('/')[-1].replace("recon" + data_format, "labels") for recon_file in self.recon_files
]
self.file_offsets = [0]
self.dataset_mean = None
self.dataset_std = None
# If data is already prepared load anduse that data
if load_from_tfrecords_dir is not None:
if not os.path.isdir(load_from_tfrecords_dir):
raise ValueError(f"Directory {load_from_tfrecords_dir} does not exist.")
else:
self.tfrecords_dir = load_from_tfrecords_dir
else:
utils.safe_remove_directory(tfrecords_dir)
self.batch_size = batch_size
self.labels_list = labels_list
self.input_shape = input_shape
self.transpose = transpose
self.to_standardize = to_standardize
self.include_y_local = include_y_local
self.process_file_parallel()
self.current_file_index = None
self.current_dataframes = None
if tfrecords_dir is None:
raise ValueError(f"tfrecords_dir is None")
self.tfrecords_dir = tfrecords_dir
os.makedirs(self.tfrecords_dir, exist_ok=True)
self.save_batches_parallel() # save all the batches
del self.current_dataframes
self.tfrecord_filenames = np.sort(np.array(tf.io.gfile.glob(os.path.join(self.tfrecords_dir, "*.tfrecord"))))
self.quantize = quantize
self.epoch_count = 0
self.on_epoch_end()
def process_file_parallel(self):
file_infos = [(afile, self.use_time_stamps, self.file_type, self.input_shape, self.transpose) for afile in self.recon_files]
results = []
with ProcessPoolExecutor(self.max_workers) as executor:
futures = [executor.submit(self._process_file_single, file_info) for file_info in file_infos]
for future in tqdm(as_completed(futures), total=len(file_infos), desc="Processing Files..."):
results.append(future.result())
for amean, avariance, amin, amax, num_rows in results:
self.file_offsets.append(self.file_offsets[-1] + num_rows)
if self.dataset_mean is None:
self.dataset_max = amax
self.dataset_min = amin
self.dataset_mean = amean
self.dataset_std = avariance
else:
self.dataset_max = max(self.dataset_max, amax)
self.dataset_min = min(self.dataset_min, amin)
self.dataset_mean += amean
self.dataset_std += avariance
self.dataset_mean = self.dataset_mean / len(self.recon_files)
self.dataset_std = np.sqrt(self.dataset_std / len(self.recon_files))
self.file_offsets = np.array(self.file_offsets)
@staticmethod
def _process_file_single(file_info):
afile, use_time_stamps, file_type, input_shape, transpose = file_info
if file_type == "csv":
adf = pd.read_csv(afile).dropna()
elif file_type == "parquet":
adf = pd.read_parquet(afile, columns=use_time_stamps).dropna()
x = adf.values
nonzeros = abs(x) > 0
x[nonzeros] = np.sign(x[nonzeros]) * np.log1p(abs(x[nonzeros])) / math.log(2)
amean, avariance = np.mean(x[nonzeros], keepdims=True), np.var(x[nonzeros], keepdims=True) + 1e-10
centered = np.zeros_like(x)
centered[nonzeros] = (x[nonzeros] - amean) / np.sqrt(avariance)
x = x.reshape((-1, *input_shape))
if transpose is not None:
x = x.transpose(transpose)
amin, amax = np.min(centered), np.max(centered)
len_adf = len(adf)
del adf
gc.collect()
return amean, avariance, amin, amax, len_adf
def standardize(self, x, norm_factor_pos=1.7, norm_factor_neg=2.5):
"""
Applies the normalization configuration in-place to a batch of inputs.
`x` is changed in-place since the function is mainly used internally
to standardize images and feed them to your network.
Args:
x: Batch of inputs to be normalized.
Returns:
The inputs, normalized.
"""
out = (x - self.dataset_mean)/self.dataset_std
out[out > 0] = out[out > 0]/norm_factor_pos
out[out < 0] = out[out < 0]/norm_factor_neg
return out
def save_batches_parallel(self):
"""
Saves data batches as multiple TFRecord files.
"""
# TODO: Make this parallelized
num_batches = self.__len__() # Total num of batches
paths_or_errors = []
# The max_workers is set to 1 because processing large batches in multiple threads can significantly
# increase RAM usage. Adjust 'max_workers' based on your system's RAM capacity and requirements.
with ThreadPoolExecutor(max_workers=1) as executor:
future_to_batch = {executor.submit(self.save_single_batch, i): i for i in range(num_batches)}
for future in tqdm(as_completed(future_to_batch), total=num_batches, desc="Saving batches as TFRecords"):
result = future.result()
paths_or_errors.append(result)
for res in paths_or_errors:
if "Error" in res:
print(res)
def save_single_batch(self, batch_index):
"""
Serializes and saves a single batch to a TFRecord file.
Args:
batch_index (int): Index of the batch to save.
Returns:
str: Path to the saved TFRecord file or an error message.
"""
try:
filename = f"batch_{batch_index}.tfrecord"
TFRfile_path = os.path.join(self.tfrecords_dir, filename)
X, y = self.prepare_batch_data(batch_index)
serialized_example = self.serialize_example(X, y)
with tf.io.TFRecordWriter(TFRfile_path) as writer:
writer.write(serialized_example)
return TFRfile_path
except Exception as e:
return f"Error saving batch {batch_index}: {e}"
def prepare_batch_data(self, batch_index):
"""
Used to fetch a batch of inputs (X,y) for the network's training.
"""
index = batch_index * self.batch_size # absolute *event* index
file_index = np.arange(self.file_offsets.size)[index < self.file_offsets][0] - 1 # first index is 0!
index = index - self.file_offsets[file_index] # relative event index in file
batch_size = min(index + self.batch_size, self.file_offsets[file_index + 1] - self.file_offsets[file_index])
if file_index != self.current_file_index:
self.current_file_index = file_index
# print()
# print(self.recon_files[file_index])
if self.file_type == "csv":
recon_df = pd.read_csv(self.recon_files[file_index])
labels_df = pd.read_csv(self.label_files[file_index])[self.labels_list]
elif self.file_type == "parquet":
recon_df = pd.read_parquet(self.recon_files[file_index], columns=self.use_time_stamps)
labels_df = pd.read_parquet(self.label_files[file_index], columns=self.labels_list)
has_nans = np.any(np.isnan(recon_df.values), axis=1)
has_nans = np.arange(recon_df.shape[0])[has_nans]
recon_df_raw = recon_df.drop(has_nans)
labels_df_raw = labels_df.drop(has_nans)
joined_df = recon_df_raw.join(labels_df_raw)
if self.shuffle: # Changed
joined_df = joined_df.sample(frac=1, random_state=self.seed).reset_index(drop=True)
recon_values = joined_df[recon_df_raw.columns].values
nonzeros = abs(recon_values) > 0
recon_values[nonzeros] = np.sign(recon_values[nonzeros])*np.log1p(abs(recon_values[nonzeros]))/math.log(2)
if self.to_standardize:
recon_values[nonzeros] = self.standardize(recon_values[nonzeros])
recon_values = recon_values.reshape((-1, *self.input_shape))
if self.transpose is not None:
recon_values = recon_values.transpose(self.transpose)
self.current_dataframes = (
recon_values,
joined_df[labels_df_raw.columns].values,
)
recon_df, labels_df = self.current_dataframes
# print(f'start_index: {index}\t end_index: {batch_size}')
X = recon_df[index:batch_size]
y = labels_df[index:batch_size] / np.array([75., 18.75, 8.0, 0.5])
if self.include_y_local:
y_local = labels_df.iloc[chosen_idxs]["y-local"].values
return [X, y_local], y
else:
return X, y
def serialize_example(self, X, y):
"""
Serializes a single example (featuresand labels) to TFRecord format.
Args:
- X: Training data
- y: labelled data
Returns:
- string (serialized TFRecord example).
"""
# X and y are float32 (maybe we can reduce this)
X = tf.cast(X, tf.float32)
y = tf.cast(y, tf.float32)
feature = {
'X': self._bytes_feature(tf.io.serialize_tensor(X)),
'y': self._bytes_feature(tf.io.serialize_tensor(y)),
}
example_proto = tf.train.Example(features=tf.train.Features(feature=feature))
return example_proto.SerializeToString()
@staticmethod
def _bytes_feature(value):
"""
Converts a string/byte value into a Tf feature of bytes_list
Args:
- string/byte value
Returns:
- tf.train.Feature object as a bytes_list containing the input value.
"""
if isinstance(value, type(tf.constant(0))): # check if Tf tensor
value = value.numpy()
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def __getitem__(self, batch_index):
"""
Load the batch from a pre-saved TFRecord file instead of processing raw data.
Each file contains exactly one batch.
quantization is done here: Helpful for pretraining without the quantization and the later training with quantized data.
shuffling is also done here.
TODO: prefetching (un-done)
"""
tfrecord_path = self.tfrecord_filenames[batch_index]
raw_dataset = tf.data.TFRecordDataset(tfrecord_path)
parsed_dataset = raw_dataset.map(self._parse_tfrecord_fn, num_parallel_calls=tf.data.AUTOTUNE)
for X_batch, y_batch in parsed_dataset:
''' Add the reshaping in saving'''
X_batch = tf.reshape(X_batch, [-1, *X_batch.shape[1:]])
y_batch = tf.reshape(y_batch, [-1, *y_batch.shape[1:]])
if self.quantize:
X_batch = QKeras_data_prep_quantizer(X_batch, bits=4, int_bits=0, alpha=1)
if self.shuffle:
indices = tf.range(start=0, limit=tf.shape(X_batch)[0], dtype=tf.int32)
shuffled_indices = tf.random.shuffle(indices, seed=self.seed)
X_batch = tf.gather(X_batch, shuffled_indices)
y_batch = tf.gather(y_batch, shuffled_indices)
del raw_dataset, parsed_dataset
return X_batch, y_batch
@staticmethod
def _parse_tfrecord_fn(example):
"""
Parses a single TFRecord example.
Returns:
- X: as a float32 tensor.
- y: as a float32 tensor.
"""
feature_description = {
'X': tf.io.FixedLenFeature([], tf.string),
'y': tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, feature_description)
X = tf.io.parse_tensor(example['X'], out_type=tf.float32)
y = tf.io.parse_tensor(example['y'], out_type=tf.float32)
return X, y
def __len__(self):
if len(self.file_offsets) != 1: # used when TFRecord files are created during initialization
num_batches = self.file_offsets[-1] // self.batch_size
else: # used during loading saved TFRecord files
num_batches = len(os.listdir(self.tfrecords_dir))
return num_batches
def on_epoch_end(self):
'''
This shuffles the file ordering so that it shuffles the ordering in which the TFRecord
are loaded during the training for each epochs.
'''
gc.collect()
self.epoch_count += 1
# Log quantization status once
if self.epoch_count == 1:
logging.warning(f"Quantization is {self.quantize} in data generator. This may affect model performance.")
if self.shuffle:
self.rng.shuffle(self.tfrecord_filenames)
self.seed += 1 # So that after each epoch the batch is shuffled with a different seed (deterministic)