-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathjoint_transforms.py
633 lines (526 loc) · 22.5 KB
/
joint_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
"""
# Code borrowded from:
# https://github.com/zijundeng/pytorch-semantic-segmentation/blob/master/utils/joint_transforms.py
#
#
# MIT License
#
# Copyright (c) 2017 ZijunDeng
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
"""
Joint Transform
"""
import math
import numbers
from PIL import Image, ImageOps
import numpy as np
import random
from scipy.ndimage.morphology import generate_binary_structure, binary_erosion
from scipy.ndimage import maximum_filter
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img, mask):
assert img.size == mask.size
for t in self.transforms:
img, mask = t(img, mask)
return img, mask
class RandomCrop(object):
"""
Take a random crop from the image.
First the image or crop size may need to be adjusted if the incoming image
is too small...
If the image is smaller than the crop, then:
the image is padded up to the size of the crop
unless 'nopad', in which case the crop size is shrunk to fit the image
A random crop is taken such that the crop fits within the image.
If a centroid is passed in, the crop must intersect the centroid.
"""
def __init__(self, size, ignore_index=0, nopad=True):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.ignore_index = ignore_index
self.nopad = nopad
self.pad_color = (0, 0, 0)
def __call__(self, img, mask, centroid=None):
assert img.size == mask.size
w, h = img.size
# ASSUME H, W
th, tw = self.size
if w == tw and h == th:
return img, mask
if self.nopad:
if th > h or tw > w:
# Instead of padding, adjust crop size to the shorter edge of image.
shorter_side = min(w, h)
th, tw = shorter_side, shorter_side
else:
# Check if we need to pad img to fit for crop_size.
if th > h:
pad_h = (th - h) // 2 + 1
else:
pad_h = 0
if tw > w:
pad_w = (tw - w) // 2 + 1
else:
pad_w = 0
border = (pad_w, pad_h, pad_w, pad_h)
if pad_h or pad_w:
# left, top, right, bottom
img = ImageOps.expand(img, border=border, fill=self.pad_color)
mask = ImageOps.expand(
mask, border=border, fill=self.ignore_index)
w, h = img.size
if centroid is not None:
# Need to insure that centroid is covered by crop and that crop
# sits fully within the image
c_x, c_y = centroid
max_x = w - tw
max_y = h - th
x1 = random.randint(c_x - tw, c_x)
x1 = min(max_x, max(0, x1))
y1 = random.randint(c_y - th, c_y)
y1 = min(max_y, max(0, y1))
else:
if w == tw:
x1 = 0
else:
x1 = random.randint(0, w - tw)
if h == th:
y1 = 0
else:
y1 = random.randint(0, h - th)
return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))
class ResizeHeight(object):
def __init__(self, size, interpolation=Image.BICUBIC):
self.target_h = size
self.interpolation = interpolation
def __call__(self, img, mask):
w, h = img.size
target_w = int(w / h * self.target_h)
return (img.resize((target_w, self.target_h), self.interpolation),
mask.resize((target_w, self.target_h), Image.NEAREST))
class CenterCrop(object):
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
th, tw = self.size
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))
class CenterCropPad(object):
def __init__(self, size, ignore_index=0):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
self.ignore_index = ignore_index
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
if isinstance(self.size, tuple):
tw, th = self.size[0], self.size[1]
else:
th, tw = self.size, self.size
if w < tw:
pad_x = tw - w
else:
pad_x = 0
if h < th:
pad_y = th - h
else:
pad_y = 0
if pad_x or pad_y:
# left, top, right, bottom
img = ImageOps.expand(img, border=(
pad_x, pad_y, pad_x, pad_y), fill=0)
mask = ImageOps.expand(mask, border=(pad_x, pad_y, pad_x, pad_y),
fill=self.ignore_index)
x1 = int(round((w - tw) / 2.))
y1 = int(round((h - th) / 2.))
return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))
class PadImage(object):
def __init__(self, size, ignore_index):
self.size = size
self.ignore_index = ignore_index
def __call__(self, img, mask):
assert img.size == mask.size
th, tw = self.size, self.size
w, h = img.size
if w > tw or h > th:
wpercent = (tw / float(w))
target_h = int((float(img.size[1]) * float(wpercent)))
img, mask = img.resize((tw, target_h), Image.BICUBIC), mask.resize(
(tw, target_h), Image.NEAREST)
w, h = img.size
# Pad
img = ImageOps.expand(img, border=(0, 0, tw - w, th - h), fill=0)
mask = ImageOps.expand(mask, border=(
0, 0, tw - w, th - h), fill=self.ignore_index)
return img, mask
class RandomHorizontallyFlip(object):
def __call__(self, img, mask):
if random.random() < 0.5:
return img.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(
Image.FLIP_LEFT_RIGHT)
return img, mask
class FreeScale(object):
def __init__(self, size):
self.size = tuple(reversed(size)) # size: (h, w)
def __call__(self, img, mask):
assert img.size == mask.size
return img.resize(self.size, Image.BICUBIC), mask.resize(self.size, Image.NEAREST)
class Scale(object):
"""
Scale image such that longer side is == size
"""
def __init__(self, size):
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
if (w >= h and w == self.size) or (h >= w and h == self.size):
return img, mask
if w > h:
ow = self.size
oh = int(self.size * h / w)
return img.resize((ow, oh), Image.BICUBIC), mask.resize(
(ow, oh), Image.NEAREST)
else:
oh = self.size
ow = int(self.size * w / h)
return img.resize((ow, oh), Image.BICUBIC), mask.resize(
(ow, oh), Image.NEAREST)
class ScaleMin(object):
"""
Scale image such that shorter side is == size
"""
def __init__(self, size):
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
if (w <= h and w == self.size) or (h <= w and h == self.size):
return img, mask
if w < h:
ow = self.size
oh = int(self.size * h / w)
return img.resize((ow, oh), Image.BICUBIC), mask.resize(
(ow, oh), Image.NEAREST)
else:
oh = self.size
ow = int(self.size * w / h)
return img.resize((ow, oh), Image.BICUBIC), mask.resize(
(ow, oh), Image.NEAREST)
class Resize(object):
"""
Resize image to exact size of crop
"""
def __init__(self, size):
if isinstance(size, numbers.Number):
self.size = (int(size), int(size))
else:
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
if (w == h and w == self.size):
return img, mask
return (img.resize(self.size, Image.BICUBIC),
mask.resize(self.size, Image.NEAREST))
class RandomSizedCrop(object):
def __init__(self, size):
self.size = size
def __call__(self, img, mask):
assert img.size == mask.size
for attempt in range(10):
area = img.size[0] * img.size[1]
target_area = random.uniform(0.45, 1.0) * area
aspect_ratio = random.uniform(0.5, 2)
w = int(round(math.sqrt(target_area * aspect_ratio)))
h = int(round(math.sqrt(target_area / aspect_ratio)))
if random.random() < 0.5:
w, h = h, w
if w <= img.size[0] and h <= img.size[1]:
x1 = random.randint(0, img.size[0] - w)
y1 = random.randint(0, img.size[1] - h)
img = img.crop((x1, y1, x1 + w, y1 + h))
mask = mask.crop((x1, y1, x1 + w, y1 + h))
assert (img.size == (w, h))
return img.resize((self.size, self.size), Image.BICUBIC),\
mask.resize((self.size, self.size), Image.NEAREST)
# Fallback
scale = Scale(self.size)
crop = CenterCrop(self.size)
return crop(*scale(img, mask))
class RandomRotate(object):
def __init__(self, degree):
self.degree = degree
def __call__(self, img, mask):
rotate_degree = random.random() * 2 * self.degree - self.degree
return img.rotate(rotate_degree, Image.BICUBIC), mask.rotate(
rotate_degree, Image.NEAREST)
class RandomSizeAndCrop(object):
def __init__(self, size, crop_nopad,
scale_min=0.5, scale_max=2.0, ignore_index=0, pre_size=None):
self.size = size
self.crop = RandomCrop(
self.size, ignore_index=ignore_index, nopad=crop_nopad)
self.scale_min = scale_min
self.scale_max = scale_max
self.pre_size = pre_size
def __call__(self, img, mask, centroid=None):
assert img.size == mask.size
# first, resize such that shorter edge is pre_size
if self.pre_size is None:
scale_amt = 1.
elif img.size[1] < img.size[0]:
scale_amt = self.pre_size / img.size[1]
else:
scale_amt = self.pre_size / img.size[0]
scale_amt *= random.uniform(self.scale_min, self.scale_max)
w, h = [int(i * scale_amt) for i in img.size]
if centroid is not None:
centroid = [int(c * scale_amt) for c in centroid]
img, mask = img.resize((w, h), Image.BICUBIC), mask.resize(
(w, h), Image.NEAREST)
return self.crop(img, mask, centroid)
class SlidingCropOld(object):
def __init__(self, crop_size, stride_rate, ignore_label):
self.crop_size = crop_size
self.stride_rate = stride_rate
self.ignore_label = ignore_label
def _pad(self, img, mask):
h, w = img.shape[: 2]
pad_h = max(self.crop_size - h, 0)
pad_w = max(self.crop_size - w, 0)
img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant',
constant_values=self.ignore_label)
return img, mask
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
long_size = max(h, w)
img = np.array(img)
mask = np.array(mask)
if long_size > self.crop_size:
stride = int(math.ceil(self.crop_size * self.stride_rate))
h_step_num = int(
math.ceil((h - self.crop_size) / float(stride))) + 1
w_step_num = int(
math.ceil((w - self.crop_size) / float(stride))) + 1
img_sublist, mask_sublist = [], []
for yy in range(h_step_num):
for xx in range(w_step_num):
sy, sx = yy * stride, xx * stride
ey, ex = sy + self.crop_size, sx + self.crop_size
img_sub = img[sy: ey, sx: ex, :]
mask_sub = mask[sy: ey, sx: ex]
img_sub, mask_sub = self._pad(img_sub, mask_sub)
img_sublist.append(
Image.fromarray(
img_sub.astype(
np.uint8)).convert('RGB'))
mask_sublist.append(
Image.fromarray(
mask_sub.astype(
np.uint8)).convert('P'))
return img_sublist, mask_sublist
else:
img, mask = self._pad(img, mask)
img = Image.fromarray(img.astype(np.uint8)).convert('RGB')
mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
return img, mask
class SlidingCrop(object):
def __init__(self, crop_size, stride_rate, ignore_label):
self.crop_size = crop_size
self.stride_rate = stride_rate
self.ignore_label = ignore_label
def _pad(self, img, mask):
h, w = img.shape[: 2]
pad_h = max(self.crop_size - h, 0)
pad_w = max(self.crop_size - w, 0)
img = np.pad(img, ((0, pad_h), (0, pad_w), (0, 0)), 'constant')
mask = np.pad(mask, ((0, pad_h), (0, pad_w)), 'constant',
constant_values=self.ignore_label)
return img, mask, h, w
def __call__(self, img, mask):
assert img.size == mask.size
w, h = img.size
long_size = max(h, w)
img = np.array(img)
mask = np.array(mask)
if long_size > self.crop_size:
stride = int(math.ceil(self.crop_size * self.stride_rate))
h_step_num = int(
math.ceil((h - self.crop_size) / float(stride))) + 1
w_step_num = int(
math.ceil((w - self.crop_size) / float(stride))) + 1
img_slices, mask_slices, slices_info = [], [], []
for yy in range(h_step_num):
for xx in range(w_step_num):
sy, sx = yy * stride, xx * stride
ey, ex = sy + self.crop_size, sx + self.crop_size
img_sub = img[sy: ey, sx: ex, :]
mask_sub = mask[sy: ey, sx: ex]
img_sub, mask_sub, sub_h, sub_w = self._pad(
img_sub, mask_sub)
img_slices.append(
Image.fromarray(
img_sub.astype(
np.uint8)).convert('RGB'))
mask_slices.append(
Image.fromarray(
mask_sub.astype(
np.uint8)).convert('P'))
slices_info.append([sy, ey, sx, ex, sub_h, sub_w])
return img_slices, mask_slices, slices_info
else:
img, mask, sub_h, sub_w = self._pad(img, mask)
img = Image.fromarray(img.astype(np.uint8)).convert('RGB')
mask = Image.fromarray(mask.astype(np.uint8)).convert('P')
return [img], [mask], [[0, sub_h, 0, sub_w, sub_h, sub_w]]
class ClassUniform(object):
def __init__(self, size, crop_nopad, scale_min=0.5, scale_max=2.0, ignore_index=0,
class_list=[16, 15, 14]):
"""
This is the initialization for class uniform sampling
:param size: crop size (int)
:param crop_nopad: Padding or no padding (bool)
:param scale_min: Minimum Scale (float)
:param scale_max: Maximum Scale (float)
:param ignore_index: The index value to ignore in the GT images (unsigned int)
:param class_list: A list of class to sample around, by default Truck, train, bus
"""
self.size = size
self.crop = RandomCrop(
self.size, ignore_index=ignore_index, nopad=crop_nopad)
self.class_list = class_list.replace(" ", "").split(",")
self.scale_min = scale_min
self.scale_max = scale_max
def detect_peaks(self, image):
"""
Takes an image and detect the peaks usingthe local maximum filter.
Returns a boolean mask of the peaks (i.e. 1 when
the pixel's value is the neighborhood maximum, 0 otherwise)
:param image: An 2d input images
:return: Binary output images of the same size as input with pixel value equal
to 1 indicating that there is peak at that point
"""
# define an 8-connected neighborhood
neighborhood = generate_binary_structure(2, 2)
# apply the local maximum filter; all pixel of maximal value
# in their neighborhood are set to 1
local_max = maximum_filter(image, footprint=neighborhood) == image
# local_max is a mask that contains the peaks we are
# looking for, but also the background.
# In order to isolate the peaks we must remove the background from the mask.
# we create the mask of the background
background = (image == 0)
# a little technicality: we must erode the background in order to
# successfully subtract it form local_max, otherwise a line will
# appear along the background border (artifact of the local maximum filter)
eroded_background = binary_erosion(background, structure=neighborhood,
border_value=1)
# we obtain the final mask, containing only peaks,
# by removing the background from the local_max mask (xor operation)
detected_peaks = local_max ^ eroded_background
return detected_peaks
def __call__(self, img, mask):
"""
:param img: PIL Input Image
:param mask: PIL Input Mask
:return: PIL output PIL (mask, crop) of self.crop_size
"""
assert img.size == mask.size
scale_amt = random.uniform(self.scale_min, self.scale_max)
w = int(scale_amt * img.size[0])
h = int(scale_amt * img.size[1])
if scale_amt < 1.0:
img, mask = img.resize((w, h), Image.BICUBIC), mask.resize((w, h),
Image.NEAREST)
return self.crop(img, mask)
else:
# Smart Crop ( Class Uniform's ABN)
origw, origh = mask.size
img_new, mask_new = \
img.resize((w, h), Image.BICUBIC), mask.resize(
(w, h), Image.NEAREST)
# [16, 15, 14] # Train, Truck, Bus
interested_class = self.class_list
data = np.array(mask)
arr = np.zeros((1024, 2048))
for class_of_interest in interested_class:
# hist = np.histogram(data==class_of_interest)
map = np.where(data == class_of_interest, data, 0)
map = map.astype('float64') / map.sum() / class_of_interest
map[np.isnan(map)] = 0
arr = arr + map
origarr = arr
window_size = 250
# Given a list of classes of interest find the points on the image that are
# of interest to crop from
sum_arr = np.zeros((1024, 2048)).astype('float32')
tmp = np.zeros((1024, 2048)).astype('float32')
for x in range(0, arr.shape[0] - window_size, window_size):
for y in range(0, arr.shape[1] - window_size, window_size):
sum_arr[int(x + window_size / 2), int(y + window_size / 2)] = origarr[
x:x + window_size,
y:y + window_size].sum()
tmp[x:x + window_size, y:y + window_size] = \
origarr[x:x + window_size, y:y + window_size].sum()
# Scaling Ratios in X and Y for non-uniform images
ratio = (float(origw) / w, float(origh) / h)
output = self.detect_peaks(sum_arr)
coord = (np.column_stack(np.where(output))).tolist()
# Check if there are any peaks in the images to crop from if not do standard
# cropping behaviour
if len(coord) == 0:
return self.crop(img_new, mask_new)
else:
# If peaks are detected, random peak selection followed by peak
# coordinate scaling to new scaled image and then random
# cropping around the peak point in the scaled image
randompick = np.random.randint(len(coord))
y, x = coord[randompick]
y, x = int(y * ratio[0]), int(x * ratio[1])
window_size = window_size * ratio[0]
cropx = random.uniform(
max(0, (x - window_size / 2) - (self.size - window_size)),
max((x - window_size / 2), (x - window_size / 2) - (
(w - window_size) - x + window_size / 2)))
cropy = random.uniform(
max(0, (y - window_size / 2) - (self.size - window_size)),
max((y - window_size / 2), (y - window_size / 2) - (
(h - window_size) - y + window_size / 2)))
return_img = img_new.crop(
(cropx, cropy, cropx + self.size, cropy + self.size))
return_mask = mask_new.crop(
(cropx, cropy, cropx + self.size, cropy + self.size))
return (return_img, return_mask)