-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathl0_vat_semi_trans.py
300 lines (255 loc) · 14.7 KB
/
l0_vat_semi_trans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
import os
import argparse
import traceback
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data_util
import tensorboardX as tbX
from ExpUtils import *
from torch_func.utils import set_framework_seed, weights_init_normal, adjust_learning_rate, load_checkpoint_by_marker
from torch_func.evaluate import evaluate_classifier
from torch_func.load_dataset import load_dataset
from torch_func.mnist_load_dataset import load_dataset as mnist_load_dataset
import models
from Loss import L0Layer, L0VATOne
from Loss.l0_utils import show_and_save_generated_demo
def parse_args():
parser = argparse.ArgumentParser(description='L0-VAT Semi-supervised learning in PyTorch')
parser.add_argument('--dataset', type=str, default='cifar10', help='mnist, cifar10, svhn (default: cifar10)')
parser.add_argument('--data-dir', type=str, default='data', help='default: data')
parser.add_argument('--trainer', type=str, default='l0', help='ce, vat, l0(L0, not ten), l02, (default: l0)')
parser.add_argument('--size', type=int, default=4000, help='size of training data set, fixed size for datasets (default: 4000)')
parser.add_argument('--arch', type=str, default='CNN9', help='CNN9 for semi supervised learning on dataset')
parser.add_argument('--num-epochs', type=int, default=100, metavar='N', help='number of epochs (default: 100)')
parser.add_argument('--num-batch-it', type=int, default=400, metavar='N', help='number of batch iterations (default: 400)')
parser.add_argument('--seed', type=int, default=1, metavar='N', help='random seed (default: 1)')
parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training')
parser.add_argument('--gpu-id', type=str, default="", metavar='N', help='gpu id list (default: auto select)')
parser.add_argument('--log-interval', type=int, default=1, metavar='N', help='iterations to wait before logging status, (default: 1)')
parser.add_argument('--batch-size', type=int, default=32, help='batch size of training data set, MNIST uses 100 (default: 32)')
parser.add_argument('--ul-batch-size', type=int, default=128, help='batch size of unlabeled data set, MNIST uses 250 (default: 128)')
parser.add_argument('--lr', type=float, default=0.001, help='learning rate (default: 0.001)')
parser.add_argument('--lr-a', type=float, default=0.001, help='learning rate for log_alpha (default: 0.001)')
parser.add_argument('--lr-decay', type=float, default=0.95, help='learning rate decay used on MNIST (default: 0.95)')
parser.add_argument('--epoch-decay-start', type=float, default=80, help='start learning rate decay used on SVHN and cifar10 (default: 80)')
parser.add_argument('--alpha', type=float, default=1, help='alpha for KL div loss (default: 1)')
parser.add_argument('--eps', type=float, default=1, help='alpha for KL div loss (default: 1)')
parser.add_argument('--lamb', type=float, default=1.0, help='lambda for unlabeled l0 loss (default: 1)')
parser.add_argument('--lamb2', type=float, default=0.0, help='lambda for unlabeled smooth loss (default: 1)')
parser.add_argument('--log-alpha', type=float, default=0.1, help='log alpha initialization of L0VAT (default: 0.1)')
parser.add_argument('--zeta', type=float, default=1.1, help='zeta for L0VAT, always > 1 (default: 1.1)')
parser.add_argument('--beta', type=float, default=0.66, help='beta for L0VAT (default: 0.66)')
parser.add_argument('--gamma', type=float, default=-0.1, help='gamma for L0VAT, always < 0 (default: -0.1)')
parser.add_argument('--affine', action='store_true', default=False, help='batch norm affine configuration')
parser.add_argument('--top-bn', action='store_true', default=False, help='enable top batch norm layer')
parser.add_argument('--ent-min', action='store_true', default=False, help='use entropy minimum')
parser.add_argument('--kl', type=int, default=1, help='unlabel loss computing, (default: 1)')
parser.add_argument('--aug-trans', action='store_true', default=False, help='data augmentation')
parser.add_argument('--aug-flip', action='store_true', default=False, help='data augmentation flip')
parser.add_argument('--drop', type=float, default=0.5, help='dropout rate, (default: 0.5)')
parser.add_argument('--log-dir', type=str, default='', metavar='S', help='tensorboard directory, (default: an absolute path)')
parser.add_argument('--log-arg', type=str, default='', metavar='S', help='show the arguments in directory name')
parser.add_argument('--debug', action='store_true', default=False, help='compare log side by side')
parser.add_argument('--vis', action='store_true', default=False, help='visual by tensor board')
parser.add_argument('-r', '--resume', type=str, default='', metavar='S', help='resume from pth file')
args = parser.parse_args()
args.dir_path = None
if args.gpu_id == "":
args.gpu_id = auto_select_gpu()
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
if "vat" == args.trainer:
args.xi = 1e-6
args.eps = {'mnist': 0.5, 'svhn': 2.5, 'cifar10': 10}[args.dataset]
args.ent_min = False
if not args.log_arg:
args.log_arg = "trainer-eps-xi-ent_min-top_bn-lr"
if not args.log_arg:
args.log_arg = "trainer-lr_a-lamb-lamb2-k-top_bn-lr-fig-layer"
if args.vis:
args.dir_path = form_dir_path("L0VAT-semi", args)
set_file_logger(logger, args)
args.writer = tbX.SummaryWriter(log_dir=args.dir_path)
os.mkdir("%s/demo" % args.dir_path)
wlog("args in this experiment:\n%s" % '\n'.join(str(e) for e in sorted(vars(args).items())))
args.cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device("cuda" if args.cuda else "cpu")
args.device = device
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
return args, kwargs
def get_data(args):
if args.dataset == "mnist":
# VAT parameters for MNIST. They are different from SVHN/CIFAR10
if args.size != 1000:
args.size = 100
args.num_batch_it = 500
train_l, train_ul, test_set = mnist_load_dataset("mnist", size=args.size, keep=True)
else:
train_l, train_ul, test_set = load_dataset("%s/%s" % (args.data_dir, args.dataset), valid=False, dataset_seed=args.seed)
wlog("N_train_labeled:{}, N_train_unlabeled:{}".format(train_l.size, train_ul.size))
wlog("train_l sum {}".format(train_l.data.sum()))
summary(train_ul.data)
if args.trainer == "l0":
# shape * 4 / 1024 / 1024 MB, For example, MNIST 60000 * 784 * 4 / 1024 / 1024 ~ 180 MB, CIFAR10 ~ 860 MB
size, c, h, w = train_ul.data.shape
if abs(args.log_alpha) > 0.0001:
if '-np' in args.log_arg:
train_ul.log_alpha = torch.FloatTensor(np.random.normal(0, args.alpha, (size, 1, h, w))).to(args.device)
else:
train_ul.log_alpha = torch.randn((size, 1, h, w), device=args.device)
else:
train_ul.log_alpha = torch.zeros((size, 1, h, w)).to(args.device)
train_ul.log_alpha.requires_grad = True
args.num_classes = {'mnist': 10, 'svhn': 10, 'cifar10': 10, 'cifar100': 100}[args.dataset]
test_set = data_util.TensorDataset(torch.FloatTensor(test_set.data), torch.LongTensor(test_set.label))
test_loader = data_util.DataLoader(test_set, 128, False)
return train_l, train_ul, test_loader
def init_model(args):
arch = getattr(models, args.arch)
model = arch(args)
if args.debug:
# weights init is based on numpy, so only need np.random.seed()
np.random.seed(args.seed)
model.apply(weights_init_normal)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
start_epoch = 0
if args.resume:
exp_marker = "L0VAT-semi/%s" % args.dataset
checkpoint = load_checkpoint_by_marker(args, exp_marker)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
for state in optimizer.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(args.device)
if args.dataset == "mnist":
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=args.lr_decay)
else:
scheduler = "linear"
model = model.to(args.device)
model.train()
return model, optimizer, scheduler, start_epoch
def train(dataset_kit, model_kit, args):
train_l, train_ul, test_loader = dataset_kit
model, optimizer, scheduler, start_epoch = model_kit
if "sgd" in args.log_arg:
opt_method = optim.SGD
elif "rms" in args.log_arg:
opt_method = optim.RMSprop
else:
opt_method = optim.Adam
# want to use an optimizer with the history like Adam/RMSprop, it will monitor on all log alpha and take longer time
# if just monitor on a batch of log alpha, the optimizer will work as SGD
alpha_opt = opt_method([train_ul.log_alpha], lr=args.lr_a)
# Define losses.
criterion = nn.CrossEntropyLoss()
l0_ins = L0Layer(args)
l0_ins.train()
reg_component = L0VATOne(args)
# show the masked images and masks
idx = []
vis_set = None
if args.vis and "l0" in args.trainer and "fig" in args.log_arg:
np.random.seed(0)
for i in range(10):
ind = np.where(train_ul.label == i)[0]
idx.append(np.random.choice(ind, 1))
idx = np.concatenate(idx)
wlog("select index images %s" % str(list(idx)))
if args.dataset not in ['mnist', 'svhn']:
temp, args.data_dir = args.data_dir, 'data1.0'
_, vis_dataset, _ = get_data(args)
vis_set = vis_dataset.data[idx]
args.data_dir = temp
else:
vis_set = train_ul.data[idx]
log_alpha = train_ul.log_alpha[idx]
show_and_save_generated_demo(l0_ins, log_alpha, train_ul.data[idx], args, 0, 0.1, 1, vis_set=vis_set)
# train
saved_count = 0
start_time = time.time()
decay_ok = True
wlog("decay start on generator %s" % str(decay_ok))
for epoch in range(start_epoch, args.num_epochs):
for it in range(args.num_batch_it):
x, t = train_l.get(args.batch_size, aug_trans=args.aug_trans, aug_flip=args.aug_flip)
images = torch.FloatTensor(x).to(args.device)
labels = torch.LongTensor(t).to(args.device)
x_u, t_for_debug, x_u_idx = train_ul.get(args.ul_batch_size, aug_trans=args.aug_trans, aug_flip=args.aug_flip, get_idx=True)
ul_images = torch.FloatTensor(x_u).to(args.device)
log_alpha = train_ul.log_alpha[x_u_idx]
logits = model(images)
# supervised loss
ce_loss = criterion(logits, labels)
sup_loss = ce_loss
ul_loss = 0
total_loss = sup_loss
if "ce" == args.trainer:
pass
elif "l0" in args.trainer:
ul_loss, mask = reg_component(model, ul_images, log_alpha, l0_ins, kl_way=args.kl)
total_loss += ul_loss
alpha_opt.zero_grad()
else:
raise NotImplementedError
optimizer.zero_grad()
total_loss.backward()
if "l0" == args.trainer and (epoch < args.epoch_decay_start or decay_ok):
# one stage
for p in alpha_opt.param_groups[0]['params']:
if p.grad is None:
continue
p.grad.data = -p.grad.data
alpha_opt.step()
optimizer.step()
if ((epoch % args.log_interval) == 0 and it == args.num_batch_it - 1) or (args.debug and it < 5 and epoch == 0):
n_err, test_loss = evaluate_classifier(model, test_loader, args.device)
acc = 1 - n_err / len(test_loader.dataset)
cost_time = time.time() - start_time
wlog("Epoch: %d Train Loss %.4f ce %.5f, ul loss %.5f, test loss %.5f, test acc %.4f, time %.2f" % (epoch, total_loss, ce_loss, ul_loss, test_loss, acc, cost_time))
if args.vis and it == args.num_batch_it - 1:
if (epoch + 1) * 10 % args.num_epochs == 0:
torch.save({'epoch': epoch, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': test_loss, 'acc': acc},
"%s/model.pth" % args.dir_path)
if epoch > args.num_epochs / 2:
shutil.copy("%s/model.pth" % args.dir_path, "%s/model_%d.pth" % (args.dir_path, epoch+1))
pred_y = torch.max(logits, dim=1)[1]
train_acc = 1.0 * torch.sum(pred_y == labels).item() / pred_y.shape[0]
dicts = {"Train/CELoss": ce_loss, "Train/UnsupLoss": ul_loss, "Train/Loss": total_loss, "Test/Acc": acc, "Test/Loss": test_loss, "Train/Acc": train_acc}
vis_step(args.writer, epoch, dicts)
save_interval = 5
if args.epoch_decay_start + 10 > epoch >= args.epoch_decay_start:
save_interval = 1
if "l0" in args.trainer and epoch % save_interval == 0 and "fig" in args.log_arg:
log_alpha = train_ul.log_alpha[idx]
show_and_save_generated_demo(l0_ins, log_alpha, train_ul.data[idx], args, epoch+1, acc, saved_count, vis_set)
saved_count += 1
start_time = time.time()
if scheduler == "linear":
lr = adjust_learning_rate(optimizer, epoch, args)
else:
scheduler.step()
lr = scheduler.get_lr()[0]
if epoch % args.log_interval == 0:
wlog("learning rate %f" % lr)
if args.vis:
args.writer.add_scalar("Optimizer/LearningRate", lr, epoch)
def main(args):
"""Training function."""
set_framework_seed(args.seed, args.debug)
dataset_kit = get_data(args)
model_kit = init_model(args)
train(dataset_kit, model_kit, args)
if __name__ == "__main__":
arg, kwarg = parse_args()
# noinspection PyBroadException
try:
main(arg)
except KeyboardInterrupt:
if arg.dir_path:
os.rename(arg.dir_path, arg.dir_path + "_stop")
except BaseException as err:
traceback.print_exc()
if arg.dir_path:
shutil.rmtree(arg.dir_path)