-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathexperiment.py
733 lines (573 loc) · 32.9 KB
/
experiment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
from loader import data_loader
from utils import print_line_seperator
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import KFold
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
from sklearn import svm
import numpy as np
import random
import data_preprocessor
import feature_options
import click
import utils
import pandas as pd
import datetime
from sklearn.feature_extraction.text import TfidfVectorizer
import os
np.random.seed(109)
file_path = 'MSR2019/experiment/full_dataset_with_all_features.txt'
options = feature_options.ExperimentOption()
def preprocess_data(records, options):
print("Start preprocessing commit messages and commit file patches...")
records = [data_preprocessor.preprocess_single_record(record, options) for record in records]
print("Finish preprocessing commit messages commit file patches...")
return records
def filter_using_tf_idf_threshold(records, options):
print("Filtering using tf-idf threshold...")
issue_tfidf_vectorizer = TfidfVectorizer(min_df=options.min_document_frequency)
issue_corpus = []
record_to_corpus_id = {}
corpus_count = -1
for record in records:
if record.issue_info is not None and record.issue_info != '':
corpus_count += 1
issue_corpus.append(record.issue_info)
record_to_corpus_id[record.id] = corpus_count
tfidf_matrix = issue_tfidf_vectorizer.fit_transform(issue_corpus)
feature_names = issue_tfidf_vectorizer.get_feature_names()
for record in records:
if record.issue_info is not None and record.issue_info != '':
# get tf-idf score for every word in document
doc = record_to_corpus_id[record.id]
feature_index = tfidf_matrix[doc, :].nonzero()[1]
tfidf_scores = zip(feature_index, [tfidf_matrix[doc, x] for x in feature_index])
token_to_tfidf = {}
for token, value in [(feature_names[i], s) for (i, s) in tfidf_scores]:
token_to_tfidf[token] = value
# generate new issue info contains only valuable terms
new_issue_info = ''
for token in record.issue_info.split(' '):
if token in token_to_tfidf and token_to_tfidf[token] >= options.tf_idf_threshold:
new_issue_info = new_issue_info + token + ' '
record.issue_info = new_issue_info
print("Finish filtering using tf-idf threshold...")
return records
def calculate_vocabulary(records, train_data_indices, commit_message_vectorizer, issue_vectorizer,
patch_vectorizer, options):
if options.use_issue_classifier and options.tf_idf_threshold != -1:
records = filter_using_tf_idf_threshold(records, options)
# print("Calculating bag of words for log message in train data only")
commit_message_vectorizer.fit([records[index].commit_message for index in train_data_indices])
if options.use_issue_classifier:
issue_vectorizer.fit([records[index].issue_info for index in train_data_indices if records[index].issue_info != ''])
# print("Calculating bag of words for patch in train data only")
patch_corpus = []
for index in train_data_indices:
record = records[index]
patch_corpus.append(' '.join([file.patch for file in record.commit.files if file.patch is not None]))
patch_vectorizer.fit(patch_corpus)
def retrieve_false_positive_negative(y_pred, y_test):
false_positives = []
false_negatives = []
for i in range(len(y_pred)):
if y_pred[i] == 1 and y_test[i] == 0:
false_positives.append(i)
if y_pred[i] == 0 and y_test[i] == 1:
false_negatives.append(i)
return false_positives, false_negatives
def svm_classify(classifier, x_train, x_test, y_train, y_test):
classifier.fit(x_train, y_train)
y_pred = classifier.predict(x_test)
train_predict_prob = []
for predict_prob in classifier.predict_proba(x_train):
train_predict_prob.append(predict_prob[0])
test_predict_prob = []
for predict_prob in classifier.predict_proba(x_test):
test_predict_prob.append(predict_prob[0])
false_positives, false_negatives = retrieve_false_positive_negative(y_pred, y_test)
return metrics.precision_score(y_true=y_test, y_pred=y_pred), \
metrics.recall_score(y_true=y_test, y_pred=y_pred), \
metrics.f1_score(y_true=y_test, y_pred=y_pred), y_pred, train_predict_prob, test_predict_prob, false_positives, false_negatives
def retrieve_label(records):
target = [record.label for record in records]
target = np.array(target)
return target
def calculate_log_message_feature_vector(records, commit_message_vectorizer):
commit_message_features = [commit_message_vectorizer.transform([record.commit_message]).toarray()[0]
for record in records]
commit_message_features = np.array(commit_message_features)
return commit_message_features, retrieve_label(records)
def calculate_issue_feature_vector(records, issue_vectorizer):
issue_features = [issue_vectorizer.transform([record.issue_info]).toarray()[0]
for record in records if record.issue_info != '']
issue_features = np.array(issue_features)
records_with_issue_info = [record for record in records if record.issue_info != '']
return issue_features, retrieve_label(records_with_issue_info)
def get_join_patch(record):
result = ' '.join([file.patch for file in record.commit.files if file.patch is not None])
if result is None:
return ' '
return result
def calculate_patch_feature_vector(records, patch_vectorizer):
patch_features = [patch_vectorizer.transform([get_join_patch(record)]).toarray()[0]
for record in records]
patch_features = np.array(patch_features)
target = [record.label for record in records]
target = np.array(target)
return patch_features, target
def log_message_classify(classifier, x_train, y_train, x_test, y_test):
# print("Start log message classification...")
precision, recall, f1, log_message_pred, log_message_train_predict_prob, log_message_test_predict_prob, false_positives, false_negatives \
= svm_classify(classifier, x_train, x_test, y_train, y_test)
# print("Precision: {}".format(precision))
# print("Recall: {}".format(recall))
return precision, recall, f1, log_message_pred, log_message_train_predict_prob, log_message_test_predict_prob, false_positives, false_negatives
def issue_classify(classifier, x_train, y_train, x_test, y_test, train_data, test_data):
precision, recall, f1, issue_pred, issue_train_predict_prob, issue_test_predict_prob, false_positives, false_negatives\
= svm_classify(classifier, x_train, x_test, y_train, y_test)
id_to_issue_train_predict_prob = {}
index = 0
for record in train_data:
if record.issue_info != '':
id_to_issue_train_predict_prob[record.id] = issue_train_predict_prob[index]
index += 1
id_to_issue_test_predict_prob = {}
index = 0
for record in test_data:
if record.issue_info != '':
id_to_issue_test_predict_prob[record.id] = issue_test_predict_prob[index]
index += 1
return precision, recall, f1, \
issue_pred, id_to_issue_train_predict_prob, id_to_issue_test_predict_prob, \
false_positives, false_negatives
def patch_classify(classifier, x_train, y_train, x_test, y_test):
# print("Start patch classification...")
precision, recall, f1, patch_pred, patch_train_predict_prob, patch_test_predict_prob, false_positives, false_negatives\
= svm_classify(classifier, x_train, x_test, y_train, y_test)
# print("Precision: {}".format(precision))
# print("Recall: {}".format(recall))
return precision, recall, f1, patch_pred, patch_train_predict_prob, patch_test_predict_prob, false_positives, false_negatives
def retrieve_data(records, train_data_indices, test_data_indices):
train_data = [records[index] for index in train_data_indices]
test_data = [records[index] for index in test_data_indices]
return train_data, test_data
def measure_joint_model(log_message_prediction, issue_prediction, patch_prediction,
log_message_test_predict_prob, patch_test_predict_prob,
test_data_labels, options):
join_prediction = []
for index in range(len(log_message_prediction)):
if options.use_issue_classifier:
join_prediction.append(int(log_message_prediction[index] or patch_prediction[index] or issue_prediction[index]))
else:
join_prediction.append(int(log_message_prediction[index] or patch_prediction[index]))
# precision = metrics.precision_score(y_pred=join_prediction, y_true=test_data_labels)
# recall = metrics.recall_score(y_pred=join_prediction, y_true=test_data_labels)
# f1 = metrics.f1_score(y_pred=join_prediction, y_true=test_data_labels)
log_neg_probs = log_message_test_predict_prob
log_pos_probs = [1 - prob for prob in log_neg_probs]
patch_neg_probs = patch_test_predict_prob
patch_pos_probs = [1 - prob for prob in patch_neg_probs]
y_pos_probs = []
for i, log_prob in enumerate(log_pos_probs):
y_pos_probs.append(max(log_prob, patch_pos_probs[i]))
y_neg_probs = []
for i, log_prob in enumerate(log_neg_probs):
y_neg_probs.append(max(log_prob, patch_neg_probs[i]))
precision = metrics.precision_score(y_pred=join_prediction, y_true=test_data_labels)
recall = metrics.recall_score(y_pred=join_prediction, y_true=test_data_labels)
f1 = metrics.f1_score(y_pred=join_prediction, y_true=test_data_labels)
auc_roc = metrics.roc_auc_score(y_true=test_data_labels, y_score=y_pos_probs)
auc_pr = metrics.average_precision_score(y_true=test_data_labels, y_score=y_pos_probs)
return precision, recall, f1, auc_roc, auc_pr
def measure_joint_model_using_logistic_regression(train_data, test_data, log_message_train_predict_prob, id_to_issue_train_predict_prob,
patch_train_predict_prob, log_message_test_predict_prob, id_to_issue_test_predict_prob,
patch_test_predict_prob, options, output_file_name):
ensemble_classifier = LogisticRegression()
issue_train_mean_probability = None
issue_test_mean_probability = None
if options.use_issue_classifier:
issue_train_mean_probability = np.mean([prob for id, prob in id_to_issue_train_predict_prob.items()])
issue_test_mean_probability = np.mean([prob for id, prob in id_to_issue_test_predict_prob.items()])
y_train = retrieve_label(train_data)
X_train = []
lines = ""
for index in range(len(train_data)):
if options.use_issue_classifier:
if train_data[index].id in id_to_issue_train_predict_prob:
X_train.append([log_message_train_predict_prob[index],
id_to_issue_train_predict_prob[train_data[index].id],
patch_train_predict_prob[index]])
lines = lines + str(log_message_train_predict_prob[index]) + '\t\t' \
+ str(id_to_issue_train_predict_prob[train_data[index].id]) \
+ '\t\t' + str(patch_train_predict_prob[index]) + '\n'
else:
X_train.append(
[log_message_train_predict_prob[index],
issue_train_mean_probability,
patch_train_predict_prob[index]])
else:
X_train.append([log_message_train_predict_prob[index], patch_train_predict_prob[index]])
lines = lines + "@@\n"
y_test = retrieve_label(test_data)
X_test = []
for index in range(len(test_data)):
if options.use_issue_classifier:
if test_data[index].id in id_to_issue_test_predict_prob:
X_test.append(
[log_message_test_predict_prob[index],
id_to_issue_test_predict_prob[test_data[index].id],
patch_test_predict_prob[index]])
lines = lines + str(log_message_test_predict_prob[index]) \
+ '\t\t' + str(id_to_issue_test_predict_prob[test_data[index].id]) \
+ '\t\t' + str(patch_test_predict_prob[index]) + '\n'
else:
X_test.append(
[log_message_train_predict_prob[index],
issue_test_mean_probability,
patch_train_predict_prob[index]])
else:
X_test.append([log_message_test_predict_prob[index], patch_test_predict_prob[index]])
lines = lines + "@@\n"
ensemble_classifier.fit(X=X_train, y=y_train)
y_pred = ensemble_classifier.predict(X=X_test)
y_prob = ensemble_classifier.predict_proba(X=X_test)[:, 1]
joint_precision = metrics.precision_score(y_pred=y_pred, y_true=y_test)
joint_recall = metrics.recall_score(y_pred=y_pred, y_true=y_test)
joint_f1 = metrics.f1_score(y_pred=y_pred, y_true=y_test)
joint_auc_roc = metrics.roc_auc_score(y_true=y_test, y_score=y_prob)
joint_auc_pr = metrics.average_precision_score(y_true=y_test, y_score=y_prob)
false_positives, false_negatives = retrieve_false_positive_negative(y_pred=y_pred, y_test=y_test)
for label in y_train:
lines = lines + str(label) + '\n'
lines = lines + "@@\n"
for label in y_test:
lines = lines + str(label) + '\n'
return joint_precision, joint_recall, joint_f1, joint_auc_roc, joint_auc_pr, false_positives, false_negatives, lines
def get_list_value_from_string(input):
return list(map(float, input.strip('[]').split(',')))
def retrieve_word_frequency():
# do_experiment(get_list_value_from_string(sys.argv[1]))
records = data_loader.load_records(file_path)
records = preprocess_data(records, options)
vectorizer = CountVectorizer()
transformed_data = vectorizer.fit_transform([record.commit_message for record in records])
words = vectorizer.get_feature_names()
frequencies = np.ravel(transformed_data.sum(axis=0)).tolist()
word_frequency_pair_list = []
for i in range(len(words)):
if not words[i].isdigit():
word_frequency_pair_list.append((words[i], frequencies[i]))
word_frequency_pair_list.sort(key=lambda x: x[1])
with open('MSR2019/experiment/statistics/term_frequencies.txt', 'w') as file:
for word, frequencies in word_frequency_pair_list:
file.write(str(frequencies) + '\t\t' + word + '\n')
def write_false_index_to_file(false_positive_message_records, false_negative_message_records,
false_positive_issue_records, false_negative_issue_records, false_positive_patch_records,
false_negative_patch_records, false_positive_joint_records, false_negative_joint_records):
date = datetime.datetime.now().date()
time = datetime.datetime.now().time()
time = str(time).replace(":", "_")
print("Writing false cases at {}".format(str(date) + "_" + str(time)))
utils.write_lines(false_positive_message_records, "MSR2019/experiment/statistics/false_positive/message_"
+ str(date) + "_" + str(time) + ".txt")
utils.write_lines(false_negative_message_records, "MSR2019/experiment/statistics/false_negative/message_"
+ str(date) + "_" + str(time) + ".txt")
utils.write_lines(false_positive_issue_records, "MSR2019/experiment/statistics/false_positive/issue_"
+ str(date) + "_" + str(time) + ".txt")
utils.write_lines(false_negative_issue_records, "MSR2019/experiment/statistics/false_negative/issue_"
+ str(date) + "_" + str(time) + ".txt")
utils.write_lines(false_positive_patch_records, "MSR2019/experiment/statistics/false_positive/patch_"
+ str(date) + "_" + str(time) + ".txt")
utils.write_lines(false_negative_patch_records, "MSR2019/experiment/statistics/false_negative/patch_"
+ str(date) + "_" + str(time) + ".txt")
utils.write_lines(false_positive_joint_records, "MSR2019/experiment/statistics/false_positive/joint_"
+ str(date) + "_" + str(time) + ".txt")
utils.write_lines(false_negative_joint_records, "MSR2019/experiment/statistics/false_negative/joint_"
+ str(date) + "_" + str(time) + ".txt")
def to_record_ids(false_positives, test_data_indices):
record_ids = []
for index in false_positives:
record_ids.append(test_data_indices[index].id)
return record_ids
def retrieve_top_features(classifier, vectorizer):
print("Feature names with co-efficient scores:")
feature_names = vectorizer.get_feature_names()
coefs_with_fns = sorted(zip(classifier.coef_[0], feature_names))
df = pd.DataFrame(coefs_with_fns)
df.columns = "coefficient", "word"
df.sort_values(by="coefficient")
df_pos = df.tail(30)
df_pos.style.set_caption("security related words")
print(df_pos.to_string())
print_line_seperator()
df_neg = df.head(30)
df_neg.style.set_caption("security un-related words")
print(df_neg.to_string())
print_line_seperator()
@click.command()
@click.option('-s', '--size', default=-1)
@click.option('--ignore_number', default=True)
@click.option('--github_issue', default=True, type=bool)
@click.option('--jira_ticket', default=True, type=bool)
@click.option('--use_comments', default=True, type=bool)
@click.option('-w', '--positive_weights', multiple=True, default=[0.5], type=float)
@click.option('--n_gram', default=1)
@click.option('--min_df', default=1)
@click.option('--use_linked_commits_only', default=False, type=bool)
@click.option('--use_issue_classifier', default=True, type=bool)
@click.option('--fold_to_run', default=10, type=int)
@click.option('--use_stacking_ensemble', default=True, type=bool)
@click.option('--dataset', default='', type=str)
@click.option('--tf-idf-threshold', default=-1, type=float)
@click.option('--use-patch-context-lines', default=False, type=bool)
@click.option('--run-fold', default=-1, type=int)
def do_experiment(size, ignore_number, github_issue, jira_ticket, use_comments, positive_weights, n_gram, min_df,
use_linked_commits_only, use_issue_classifier, fold_to_run, use_stacking_ensemble, dataset,
tf_idf_threshold, use_patch_context_lines, run_fold):
global file_path
if dataset != '':
file_path = 'MSR2019/experiment/' + dataset
print("Dataset: {}".format(file_path))
options = feature_options.read_option_from_command_line(size, 0, ignore_number,
github_issue, jira_ticket, use_comments,
positive_weights,
n_gram, min_df, use_linked_commits_only,
use_issue_classifier,
fold_to_run,
use_stacking_ensemble,
tf_idf_threshold,
use_patch_context_lines)
commit_message_vectorizer = CountVectorizer(ngram_range=(1, options.max_n_gram))
issue_vectorizer = CountVectorizer(ngram_range=(1, options.max_n_gram),
min_df=options.min_document_frequency)
patch_vectorizer = CountVectorizer()
positive_weights = options.positive_weights
records = data_loader.load_records(file_path)
random.shuffle(records)
if options.use_linked_commits_only:
new_records = []
for record in records:
if len(record.github_issue_list) > 0 or len(record.jira_ticket_list) > 0:
new_records.append(record)
records = new_records
if options.data_set_size != -1:
records = records[:options.data_set_size]
records = preprocess_data(records, options)
k_fold = KFold(n_splits=10, shuffle=True, random_state=109)
weight_to_log_classifier = {}
weight_to_patch_classifier = {}
weight_to_issue_classifier = {}
weight_to_log_precisions = {}
weight_to_log_recalls = {}
weight_to_log_f1s = {}
weight_to_patch_precisions = {}
weight_to_patch_recalls = {}
weight_to_patch_f1s = {}
weight_to_issue_precisions = {}
weight_to_issue_recalls = {}
weight_to_issue_f1s = {}
weight_to_joint_precisions = {}
weight_to_joint_recalls = {}
weight_to_joint_f1s = {}
weight_to_joint_auc_roc = {}
weight_to_joint_auc_pr = {}
for positive_weight in positive_weights:
negative_weight = 1 - positive_weight
weights = {1: positive_weight, 0: negative_weight}
log_classifier = svm.SVC(kernel='linear', class_weight=weights, probability=True)
patch_classifier = svm.SVC(kernel='linear', class_weight=weights, probability=True)
issue_classifier = svm.SVC(kernel='linear', class_weight=weights, probability=True)
weight_to_log_classifier[positive_weight] = log_classifier
weight_to_patch_classifier[positive_weight] = patch_classifier
weight_to_issue_classifier[positive_weight] = issue_classifier
weight_to_log_precisions[positive_weight] = []
weight_to_log_recalls[positive_weight] = []
weight_to_log_f1s[positive_weight] = []
weight_to_patch_precisions[positive_weight] = []
weight_to_patch_recalls[positive_weight] = []
weight_to_patch_f1s[positive_weight] = []
weight_to_issue_precisions[positive_weight] = []
weight_to_issue_recalls[positive_weight] = []
weight_to_issue_f1s[positive_weight] = []
weight_to_joint_precisions[positive_weight] = []
weight_to_joint_recalls[positive_weight] = []
weight_to_joint_f1s[positive_weight] = []
weight_to_joint_auc_roc[positive_weight] = []
weight_to_joint_auc_pr[positive_weight] = []
false_positive_message_records = []
false_negative_message_records = []
false_positive_issue_records = []
false_negative_issue_records = []
false_positive_patch_records = []
false_negative_patch_records = []
false_positive_joint_records = []
false_negative_joint_records = []
fold_count = 0
date = datetime.datetime.now().date()
time = datetime.datetime.now().time()
time = str(time).replace(":", "_")
directory = os.path.dirname(os.path.abspath(__file__))
for train_data_indices, test_data_indices in k_fold.split(records):
fold_count += 1
if run_fold != -1 and fold_count != run_fold:
continue
output_file_name = "fold_" + str(fold_count) + "_" + str(date) + "_" + str(time) + ".txt"
output_file_path = os.path.join(directory, "classifier_output/" + output_file_name)
if fold_count > options.fold_to_run:
break
print("Processing fold number: {}".format(fold_count))
calculate_vocabulary(records, train_data_indices, commit_message_vectorizer,
issue_vectorizer, patch_vectorizer, options)
train_data, test_data = retrieve_data(records, train_data_indices, test_data_indices)
log_x_train, log_y_train = calculate_log_message_feature_vector(train_data, commit_message_vectorizer)
log_x_test, log_y_test = calculate_log_message_feature_vector(test_data, commit_message_vectorizer)
issue_x_train, issue_y_train, issue_x_test, issue_y_test = None, None, None, None
if options.use_issue_classifier:
issue_x_train, issue_y_train = calculate_issue_feature_vector(train_data, issue_vectorizer)
issue_x_test, issue_y_test = calculate_issue_feature_vector(test_data, issue_vectorizer)
patch_x_train, patch_y_train = calculate_patch_feature_vector(train_data, patch_vectorizer)
patch_x_test, patch_y_test = calculate_patch_feature_vector(test_data, patch_vectorizer)
for positive_weight in positive_weights:
print("Current processing weight set ({},{})".format(positive_weight, 1 - positive_weight))
log_classifier = weight_to_log_classifier[positive_weight]
issue_classifier = None
id_to_issue_train_predict_prob = None
id_to_issue_test_predict_prob = None
if options.use_issue_classifier:
issue_classifier = weight_to_issue_classifier[positive_weight]
patch_classifier = weight_to_patch_classifier[positive_weight]
# calculate precision, recall for log message classification
precision, recall, f1, log_message_prediction, log_message_train_predict_prob, log_message_test_predict_prob, false_positives, false_negatives\
= log_message_classify(log_classifier, log_x_train, log_y_train, log_x_test, log_y_test)
print("Message F1: {}".format(f1))
# print("Top features for log message classifier:")
# retrieve_top_features(log_classifier, commit_message_vectorizer)
# print_line_seperator()
weight_to_log_precisions[positive_weight].append(precision)
weight_to_log_recalls[positive_weight].append(recall)
weight_to_log_f1s[positive_weight].append(f1)
false_positive_message_records.extend(to_record_ids(false_positives, test_data))
false_negative_message_records.extend(to_record_ids(false_negatives, test_data))
# calculate precision, recall for issue classification
precision, recall, f1, issue_prediction = None, None, None, None
if options.use_issue_classifier:
precision, recall, f1, issue_prediction, id_to_issue_train_predict_prob, id_to_issue_test_predict_prob, false_positives, false_negatives\
= issue_classify(issue_classifier, issue_x_train, issue_y_train, issue_x_test, issue_y_test, train_data, test_data)
print("Issue F1: {}".format(f1))
# print("Top features for issue classifier:")
# retrieve_top_features(issue_classifier, issue_vectorizer)
# print_line_seperator()
weight_to_issue_precisions[positive_weight].append(precision)
weight_to_issue_recalls[positive_weight].append(recall)
weight_to_issue_f1s[positive_weight].append(f1)
false_positive_issue_records.extend(to_record_ids(false_positives, test_data))
false_negative_issue_records.extend(to_record_ids(false_negatives, test_data))
# calculate precision, recall for patch
precision, recall, f1, patch_prediction, patch_train_predict_prob, patch_test_predict_prob, false_positives, false_negatives\
= patch_classify(patch_classifier, patch_x_train, patch_y_train, patch_x_test, patch_y_test)
print("Patch F1: {}".format(f1))
# print("Top features for patch classifier:")
# retrieve_top_features(patch_classifier, patch_vectorizer)
# print_line_seperator()
weight_to_patch_precisions[positive_weight].append(precision)
weight_to_patch_recalls[positive_weight].append(recall)
weight_to_patch_f1s[positive_weight].append(f1)
false_positive_patch_records.extend(to_record_ids(false_positives, test_data))
false_negative_patch_records.extend(to_record_ids(false_negatives, test_data))
# calculate precision, recall for joint-model
joint_precision, joint_recall, joint_f1 = None, None, None
if options.use_stacking_ensemble:
joint_precision, joint_recall, joint_f1, joint_auc_roc, joint_auc_pr, false_positive_joint_records, false_negative_joint_records, output_lines \
= measure_joint_model_using_logistic_regression(train_data=train_data,
test_data=test_data,
log_message_train_predict_prob=log_message_train_predict_prob,
id_to_issue_train_predict_prob=id_to_issue_train_predict_prob,
patch_train_predict_prob=patch_train_predict_prob,
log_message_test_predict_prob=log_message_test_predict_prob,
id_to_issue_test_predict_prob=id_to_issue_test_predict_prob,
patch_test_predict_prob=patch_test_predict_prob, options=options,
output_file_name = output_file_name)
false_positive_joint_records.extend(to_record_ids(false_positives, test_data))
false_negative_joint_records.extend(to_record_ids(false_negatives, test_data))
with open(output_file_path, 'w') as f:
f.write(output_lines)
f.close()
else:
joint_precision, joint_recall, joint_f1, joint_auc_roc, joint_auc_pr \
= measure_joint_model(log_message_prediction, issue_prediction,
patch_prediction, log_message_test_predict_prob, patch_test_predict_prob, retrieve_label(test_data), options)
weight_to_joint_precisions[positive_weight].append(joint_precision)
weight_to_joint_recalls[positive_weight].append(joint_recall)
weight_to_joint_f1s[positive_weight].append(joint_f1)
weight_to_joint_auc_roc[positive_weight].append(joint_auc_roc)
weight_to_joint_auc_pr[positive_weight].append(joint_auc_pr)
break
print_line_seperator()
for positive_weight in positive_weights:
print("Training result for positive weight: {}, negative weight: {}".format(positive_weight, 1 - positive_weight))
print("Log message mean precision: {}".format(np.mean(weight_to_log_precisions[positive_weight])))
print("Log message mean recall: {}".format(np.mean(weight_to_log_recalls[positive_weight])))
print("Log message mean f1: {}".format(np.mean(weight_to_log_f1s[positive_weight])))
if options.use_issue_classifier:
print("Issue mean precision: {}".format(np.mean(weight_to_issue_precisions[positive_weight])))
print("Issue mean recall: {}".format(np.mean(weight_to_issue_recalls[positive_weight])))
print("Issue mean f1: {}".format(np.mean(weight_to_issue_f1s[positive_weight])))
print("Patch mean precision: {}".format(np.mean(weight_to_patch_precisions[positive_weight])))
print("Patch mean recall: {}".format(np.mean(weight_to_patch_recalls[positive_weight])))
print("Patch mean f1: {}".format(np.mean(weight_to_patch_f1s[positive_weight])))
print("Joint-model mean precision: {}".format(np.mean(weight_to_joint_precisions[positive_weight])))
print("Joint-model mean recall: {}".format(np.mean(weight_to_joint_recalls[positive_weight])))
print("Joint-model mean f1: {}".format(np.mean(weight_to_joint_f1s[positive_weight])))
print("Joint-model mean AUC-ROC: {}".format(np.mean(weight_to_joint_auc_roc[positive_weight])))
print("Joint-model mean AUC-PR: {}".format(np.mean(weight_to_joint_auc_pr[positive_weight])))
print_line_seperator()
write_false_index_to_file(false_positive_message_records, false_negative_message_records,
false_positive_issue_records, false_negative_issue_records,
false_positive_patch_records, false_negative_patch_records,
false_positive_joint_records, false_negative_joint_records)
if __name__ == '__main__':
do_experiment()
# records = loader.load_records(file_path)
# count_issue = 0
# count_ticket = 0
# count_both = 0
# for record in records:
# if len(record.github_issue_list) > 0:
# count_issue += 1
# if len(record.jira_ticket_list) > 0:
# count_ticket += 1
# if len(record.github_issue_list) > 0 and len(record.jira_ticket_list) > 0:
# count_both +=1
#
# print(count_issue)
# print(count_ticket)
# print(count_both)
# count_pos = 0
# count_neg = 0
# count_pos_all = 0
# count_neg_all = 0
# count_other = 0
# records = loader.load_records(file_path)
# for record in records:
# if record.label == 1:
# count_pos_all += 1
# if record.label == 0:
# count_neg_all += 1
# if record.label != 0 and record.label != 1:
# print(record)
# if len(record.github_issue_list) > 0 or len(record.jira_ticket_list) > 0:
# if record.label == 1:
# count_pos += 1
# if record.label == 0:
# count_neg += 1
#
# if len(record.github_issue_list) == 0 and len(record.jira_ticket_list) == 0:
# count_other += 1
#
#
# print(count_pos)
# print(count_neg)
# print(count_pos_all)
# print(count_neg_all)
# print(count_other)