|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Subsetting `DataFrames` -- Exercises" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "## Goal\n", |
| 15 | + "\n", |
| 16 | + "Practice `pandas` subsetting operations" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "markdown", |
| 21 | + "metadata": {}, |
| 22 | + "source": [ |
| 23 | + "## Exercises" |
| 24 | + ] |
| 25 | + }, |
| 26 | + { |
| 27 | + "cell_type": "markdown", |
| 28 | + "metadata": {}, |
| 29 | + "source": [ |
| 30 | + "### 0. Import `pandas` and load the penguins data set" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": null, |
| 36 | + "metadata": {}, |
| 37 | + "outputs": [], |
| 38 | + "source": [ |
| 39 | + "import pandas as pd\n", |
| 40 | + "\n", |
| 41 | + "penguins = pd.read_csv(\"https://raw.githubusercontent.com/allisonhorst/palmerpenguins/master/inst/extdata/penguins.csv\")" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "markdown", |
| 46 | + "metadata": {}, |
| 47 | + "source": [ |
| 48 | + "### 1. Get the data from the column for the flipper length. What is its type of the output when you select a single column from a `DataFrame`?" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "execution_count": null, |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "# When subsetting to specific columns, it's useful to print out the column names for reference\n", |
| 58 | + "list(penguins.columns)" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": null, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [], |
| 66 | + "source": [ |
| 67 | + "# Just index the DataFrame with the column name\n", |
| 68 | + "flipper_len = penguins[\"flipper_length_mm\"]\n", |
| 69 | + "flipper_len.head(10)" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "code", |
| 74 | + "execution_count": null, |
| 75 | + "metadata": {}, |
| 76 | + "outputs": [], |
| 77 | + "source": [ |
| 78 | + "# Use the type function to get the type of the output\n", |
| 79 | + "# Here, the type is a pandas Series object since we only selected a single column\n", |
| 80 | + "type(flipper_len)" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "markdown", |
| 85 | + "metadata": {}, |
| 86 | + "source": [ |
| 87 | + "### 2. Subset the penguins data to just the columns containing length/depth measurements. What is the type of the output when you select multiple columns from a `DataFrame`?" |
| 88 | + ] |
| 89 | + }, |
| 90 | + { |
| 91 | + "cell_type": "code", |
| 92 | + "execution_count": null, |
| 93 | + "metadata": {}, |
| 94 | + "outputs": [], |
| 95 | + "source": [ |
| 96 | + "# Subsetting to multiple columns requires wraping the column names in a Python list with []\n", |
| 97 | + "length_data = penguins[[\"bill_length_mm\", \"bill_depth_mm\", \"flipper_length_mm\"]]\n", |
| 98 | + "length_data.head(10)" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": null, |
| 104 | + "metadata": {}, |
| 105 | + "outputs": [], |
| 106 | + "source": [ |
| 107 | + "# Since multiple columns were selected, the output is DataFrame\n", |
| 108 | + "type(length_data)" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "markdown", |
| 113 | + "metadata": {}, |
| 114 | + "source": [ |
| 115 | + "### 3. What are the names of the different islands represented in the data set?" |
| 116 | + ] |
| 117 | + }, |
| 118 | + { |
| 119 | + "cell_type": "code", |
| 120 | + "execution_count": null, |
| 121 | + "metadata": {}, |
| 122 | + "outputs": [], |
| 123 | + "source": [ |
| 124 | + "# Select the island column, then get the unique values\n", |
| 125 | + "list(penguins[\"island\"].unique())" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "markdown", |
| 130 | + "metadata": {}, |
| 131 | + "source": [ |
| 132 | + "### 4. How many rows have missing body mass values?\n", |
| 133 | + "\n", |
| 134 | + "Hint: You'll need to find (or guess) the name of a helper function very similar to one we used in the lesson." |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": null, |
| 140 | + "metadata": {}, |
| 141 | + "outputs": [], |
| 142 | + "source": [ |
| 143 | + "# The isna function indicates whether or not a value is missing\n", |
| 144 | + "penguins[penguins[\"body_mass_g\"].isna()]" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "code", |
| 149 | + "execution_count": null, |
| 150 | + "metadata": {}, |
| 151 | + "outputs": [], |
| 152 | + "source": [ |
| 153 | + "# It's easy to count the rows from the output, but if there were many more\n", |
| 154 | + "# shape can be used to get the count programatically\n", |
| 155 | + "penguins[penguins[\"body_mass_g\"].isna()].shape[0]" |
| 156 | + ] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "markdown", |
| 160 | + "metadata": {}, |
| 161 | + "source": [ |
| 162 | + "### 5. Get the subset of data that match ALL of the following criteria\n", |
| 163 | + "\n", |
| 164 | + "* Penguins of the Gentoo and Chinstrap species\n", |
| 165 | + "* Flipper length less than 200\n", |
| 166 | + "* Females only" |
| 167 | + ] |
| 168 | + }, |
| 169 | + { |
| 170 | + "cell_type": "code", |
| 171 | + "execution_count": null, |
| 172 | + "metadata": {}, |
| 173 | + "outputs": [], |
| 174 | + "source": [ |
| 175 | + "# This is mainly an exercise in getting the syntax correct\n", |
| 176 | + "penguins[(penguins[\"species\"].isin([\"Gentoo\", \"Chinstrap\"])) & \\\n", |
| 177 | + " (penguins[\"flipper_length_mm\"] < 200) & \\\n", |
| 178 | + " (penguins[\"sex\"] == \"female\")]" |
| 179 | + ] |
| 180 | + }, |
| 181 | + { |
| 182 | + "cell_type": "markdown", |
| 183 | + "metadata": {}, |
| 184 | + "source": [ |
| 185 | + "### 6. If we only wanted to select the `species`, `flipper_length_mm`, and `sex` columns from the above exercise, how would we need to modify the code?" |
| 186 | + ] |
| 187 | + }, |
| 188 | + { |
| 189 | + "cell_type": "code", |
| 190 | + "execution_count": null, |
| 191 | + "metadata": {}, |
| 192 | + "outputs": [], |
| 193 | + "source": [ |
| 194 | + "# To filter rows AND select specific columns, we need to use the .loc function\n", |
| 195 | + "penguins.loc[(penguins[\"species\"].isin([\"Gentoo\", \"Chinstrap\"])) & \\\n", |
| 196 | + " (penguins[\"flipper_length_mm\"] < 200) & \\\n", |
| 197 | + " (penguins[\"sex\"] == \"female\"), [\"species\", \"flipper_length_mm\", \"sex\"]]" |
| 198 | + ] |
| 199 | + } |
| 200 | + ], |
| 201 | + "metadata": { |
| 202 | + "kernelspec": { |
| 203 | + "display_name": "Python 3.9.5 - rstudio", |
| 204 | + "language": "python", |
| 205 | + "name": "rstudio-user-3.9.5" |
| 206 | + }, |
| 207 | + "language_info": { |
| 208 | + "codemirror_mode": { |
| 209 | + "name": "ipython", |
| 210 | + "version": 3 |
| 211 | + }, |
| 212 | + "file_extension": ".py", |
| 213 | + "mimetype": "text/x-python", |
| 214 | + "name": "python", |
| 215 | + "nbconvert_exporter": "python", |
| 216 | + "pygments_lexer": "ipython3", |
| 217 | + "version": "3.9.5" |
| 218 | + } |
| 219 | + }, |
| 220 | + "nbformat": 4, |
| 221 | + "nbformat_minor": 4 |
| 222 | +} |
0 commit comments