-
Notifications
You must be signed in to change notification settings - Fork 33
/
RX.cpp
969 lines (831 loc) · 44.1 KB
/
RX.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
/*
Copyright 2017 by Dennis Cabell
KE8FZX
To use this software, you must adhere to the license terms described below, and assume all responsibility for the use
of the software. The user is responsible for all consequences or damage that may result from using this software.
The user is responsible for ensuring that the hardware used to run this software complies with local regulations and that
any radio signal generated from use of this software is legal for that user to generate. The author(s) of this software
assume no liability whatsoever. The author(s) of this software is not responsible for legal or civil consequences of
using this software, including, but not limited to, any damages cause by lost control of a vehicle using this software.
If this software is copied or modified, this disclaimer must accompany all copies.
This project is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RC_RX_CABELL_V3_FHSS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RC_RX_CABELL_V3_FHSS. If not, see <http://www.gnu.org/licenses/>.
*/
#include <SPI.h>
#include "My_RF24.h"
#include "RX.h"
#include "Pins.h"
#include <EEPROM.h>
#include "Rx_Tx_Util.h"
#include "SUM_PPM.h"
#include "MyServo.h" // hacked to remove timer1 ISR - must call this in my own ISR
#include "TestHarness.h"
#include "RSSI.h"
#include "My_nRF24L01.h"
#include "SBUS.h"
My_RF24 radio1(RADIO1_CE_PIN,RADIO1_CSN_PIN);
My_RF24 radio2(RADIO2_CE_PIN,RADIO2_CSN_PIN);
My_RF24* primaryReciever = NULL;
My_RF24* secondaryReciever = NULL;
uint8_t radioConfigRegisterForTX = 0;
uint8_t radioConfigRegisterForRX_IRQ_Masked = 0;
uint8_t radioConfigRegisterForRX_IRQ_On = 0;
uint16_t channelValues [CABELL_NUM_CHANNELS];
uint8_t currentModel = 0;
uint64_t radioPipeID;
uint64_t radioNormalRxPipeID;
const int currentModelEEPROMAddress = 0;
const int radioPipeEEPROMAddress = currentModelEEPROMAddress + sizeof(currentModel);
const int softRebindFlagEEPROMAddress = radioPipeEEPROMAddress + sizeof(radioNormalRxPipeID);
const int failSafeChannelValuesEEPROMAddress = softRebindFlagEEPROMAddress + sizeof(uint8_t); // uint8_t is the sifr of the rebind flag
uint16_t failSafeChannelValues [CABELL_NUM_CHANNELS];
bool throttleArmed = true;
bool bindMode = false; // when true send bind command to cause receiver to bind enter bind mode
bool failSafeMode = false;
bool failSafeNoPulses = false;
bool packetMissed = false;
uint32_t packetInterval = DEFAULT_PACKET_INTERVAL;
uint8_t radioChannel[CABELL_RADIO_CHANNELS];
volatile uint8_t currentOutputMode = 255; // initialize to an unused mode
volatile uint8_t nextOutputMode = 255; // initialize to an unused mode
volatile bool packetReady = false;
bool telemetryEnabled = false;
int16_t analogValue[2] = {0,0};
uint16_t initialTelemetrySkipPackets = 0;
uint8_t currentChannel = CABELL_RADIO_MIN_CHANNEL_NUM; // Initializes the channel sequence.
MyServo channelServo[RX_NUM_CHANNELS];
#ifdef TEST_HARNESS
TestHarness testOut;
#endif
RSSI rssi;
//--------------------------------------------------------------------------------------------------------------------------
void attachServoPins() {
uint8_t servoPin[RX_NUM_CHANNELS] = SERVO_OUTPUT_PINS;
for (uint8_t x = 0; x < RX_NUM_CHANNELS; x++)
channelServo[x].attach(servoPin[x]);
}
//--------------------------------------------------------------------------------------------------------------------------
void detachServoPins() {
uint8_t servoPin[RX_NUM_CHANNELS] = SERVO_OUTPUT_PINS;
for (uint8_t x = 0; x < RX_NUM_CHANNELS; x++) {
channelServo[x].detach();
pinMode (servoPin[x],INPUT_PULLUP);
}
}
//--------------------------------------------------------------------------------------------------------------------------
void setupReciever() {
pinMode (PPM_OUTPUT_PIN,INPUT_PULLUP); // Set this pin mode on PPM pin to keep PPM from floating until the output mode is received. A 10k pull-up resistor is better as the pin floats until this line runs
detachServoPins(); // Sets input pullup on all servo pins to they dont float.
uint8_t softRebindFlag;
EEPROM.get(softRebindFlagEEPROMAddress,softRebindFlag);
EEPROM.get(radioPipeEEPROMAddress,radioNormalRxPipeID);
EEPROM.get(currentModelEEPROMAddress,currentModel);
if (softRebindFlag == BOUND_WITH_FAILSAFE_NO_PULSES) {
softRebindFlag = DO_NOT_SOFT_REBIND;
failSafeNoPulses = true;
}
if ((digitalRead(BIND_BUTTON_PIN) == LOW) || (softRebindFlag != DO_NOT_SOFT_REBIND)) {
bindMode = true;
radioPipeID = CABELL_BIND_RADIO_ADDR;
Serial.println (F("Bind Mode "));
digitalWrite(LED_PIN, HIGH); // Turn on LED to indicate bind mode
radioNormalRxPipeID = 0x01<<43; // This is a number bigger than the max possible pipe ID, which only uses 40 bits. This makes sure the bind routine writes to EEPROM
}
else
{
bindMode = false;
radioPipeID = radioNormalRxPipeID;
}
getChannelSequence (radioChannel, CABELL_RADIO_CHANNELS, radioPipeID);
//Need to set all CSN pins high before BEGIN so that only one device listens on SPI during the first initialization
pinMode(RADIO1_CSN_PIN,OUTPUT);
pinMode(RADIO2_CSN_PIN,OUTPUT);
digitalWrite(RADIO1_CSN_PIN,HIGH);
digitalWrite(RADIO2_CSN_PIN,HIGH);
pinMode(RADIO1_CE_PIN,OUTPUT);
pinMode(RADIO2_CE_PIN,OUTPUT);
digitalWrite(RADIO1_CE_PIN,HIGH);
digitalWrite(RADIO2_CE_PIN,HIGH);
radio1.begin();
radio2.begin();
#ifdef TEST_HARNESS
Serial.println(F("Compiled for transceiver testing. Output Disabled. Use LCD."));
#endif
// Set primary and secondary receivers.
// If only one is present, then both primary and secondary receiver pointers end up pointing to the same radio.
// This way the receiver swap logic doesn't care if one or two receives are actually connected
if (radio2.isChipConnected()) {
Serial.println(F("Backup radio detected"));
secondaryReciever = &radio2;
} else {
Serial.println(F("Backup radio not detected"));
secondaryReciever = &radio1;
digitalWrite(RADIO2_CSN_PIN,HIGH); // If the backup radio is not present, set this pin high because some older 1 radio configurations used this as CE on the primary radio
}
if (radio1.isChipConnected()) {
primaryReciever = &radio1;
Serial.println(F("Primary radio detected"));
} else {
primaryReciever = &radio2;
Serial.println(F("Primary radio not detected"));
}
RADIO_IRQ_SET_INPUT;
RADIO_IRQ_SET_PULLUP;
initializeRadio(primaryReciever);
initializeRadio(secondaryReciever);
setTelemetryPowerMode(CABELL_OPTION_MASK_MAX_POWER_OVERRIDE);
primaryReciever->flush_rx();
secondaryReciever->flush_rx();
packetReady = false;
outputFailSafeValues(false); // initialize default values for output channels
Serial.print(F("Radio ID: "));Serial.print((uint32_t)(radioPipeID>>32)); Serial.print(F(" "));Serial.println((uint32_t)((radioPipeID<<32)>>32));
Serial.print(F("Current Model Number: "));Serial.println(currentModel);
#ifdef TEST_HARNESS
testOut.init();
Serial.println(F("Operating as a test harness. Output disabled."));
#endif
setNextRadioChannel(true);
//setup pin change interrupt
cli(); // switch interrupts off while messing with their settings
PCICR =0x02; // Enable PCINT1 interrupt
PCMSK1 = RADIO_IRQ_PIN_MASK;
sei();
}
//--------------------------------------------------------------------------------------------------------------------------
ISR(PCINT1_vect) {
if (IS_RADIO_IRQ_on) { // pulled low when packet is received
packetReady = true;
}
}
//--------------------------------------------------------------------------------------------------------------------------
void outputChannels() {
#ifndef TEST_HARNESS
if (!bindMode) {
if (failSafeNoPulses && failSafeMode) {
nextOutputMode = 255; // set to unused output mode
}
if (!throttleArmed) {
channelValues[THROTTLE_CHANNEL] = THROTTLE_DISARM_VALUE; // Safety precaution. Min throttle if not armed
}
bool firstPacketOnMode = false;
if (currentOutputMode != nextOutputMode) { // If new mode, turn off all modes
firstPacketOnMode = true;
detachServoPins();
if (PPMEnabled()) ppmDisable();
if (sbusEnabled()) sbusDisable();
}
if (nextOutputMode == CABELL_RECIEVER_OUTPUT_PWM) {
outputPWM(); // Do this first so we have something to send when PWM enabled
if (firstPacketOnMode) { // First time through attach pins to start output
attachServoPins();
}
}
if (nextOutputMode == CABELL_RECIEVER_OUTPUT_PPM) {
outputSumPPM(); // Do this first so we have something to send when PPM enabled
if (firstPacketOnMode) {
if (!PPMEnabled()) {
ppmSetup(PPM_OUTPUT_PIN, RX_NUM_CHANNELS);
}
}
}
if (nextOutputMode == CABELL_RECIEVER_OUTPUT_SBUS) {
outputSbus(); // Do this first so we have something to send when SBUS enabled
if (firstPacketOnMode) {
if (!sbusEnabled()) {
sbusSetup();
}
}
}
currentOutputMode = nextOutputMode;
}
#endif
}
//--------------------------------------------------------------------------------------------------------------------------
void setNextRadioChannel(bool missedPacket) {
//primaryReciever->stopListening();
primaryReciever->write_register(NRF_CONFIG,radioConfigRegisterForTX); // This is in place of stop listening to make the change to TX more quickly. Also sets all interrupts to mask
primaryReciever->flush_rx();
unsigned long expectedTransmitCompleteTime = 0;
if (telemetryEnabled) {
if (initialTelemetrySkipPackets >= INITIAL_TELEMETRY_PACKETS_TO_SKIP) { // don't send the first 500 telemetry packets to avoid annoying warnings at startup
expectedTransmitCompleteTime = sendTelemetryPacket();
} else {
initialTelemetrySkipPackets++;
}
}
//only swap receivers if the secondary receiver got the last packet
//so we don't swap to a receiver that is not currently receiving
//unless packet was missed by both radios, in which case swap every time.
bool performSwap = secondaryReciever->available() || missedPacket;
currentChannel = getNextChannel (radioChannel, CABELL_RADIO_CHANNELS, currentChannel);
if (expectedTransmitCompleteTime != 0) {
// Wait here for the telemetry packet to finish transmitting
long waitTimeLeft = (long)(expectedTransmitCompleteTime - micros());
if (waitTimeLeft > 0) {
delayMicroseconds(waitTimeLeft);
}
}
//secondaryReciever->stopListening();
secondaryReciever->write_register(NRF_CONFIG,radioConfigRegisterForTX); // This is in place of stop listening to make the change to TX more quickly. Also sets all interrupts to mask.
secondaryReciever->flush_rx();
secondaryReciever->setChannel(currentChannel);
//secondaryReciever->startListening();
secondaryReciever->write_register(NRF_CONFIG,radioConfigRegisterForRX_IRQ_Masked); // This is in place of stop listening to make the change to TX more quickly. Also sets all interrupts to mask.
secondaryReciever->write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // This normally happens in StartListening
primaryReciever->setChannel(currentChannel);
//primaryReciever->startListening();
primaryReciever->write_register(NRF_CONFIG,radioConfigRegisterForRX_IRQ_Masked); // This is in place of stop listening to make the change to TX more quickly. Also sets all interrupts to mask.
primaryReciever->write_register(NRF_STATUS, _BV(RX_DR) | _BV(TX_DS) | _BV(MAX_RT) ); // This normally happens in StartListening
if (performSwap) {
swapRecievers();
}
packetReady = false;
primaryReciever->write_register(NRF_CONFIG,radioConfigRegisterForRX_IRQ_On); // Turn on RX interrupt
}
//--------------------------------------------------------------------------------------------------------------------------
bool getPacket() {
static unsigned long lastPacketTime = 0;
static bool inititalGoodPacketRecieved = false;
static unsigned long nextAutomaticChannelSwitch = micros() + RESYNC_WAIT_MICROS;
static unsigned long lastRadioPacketeRecievedTime = millis() - (long)RESYNC_TIME_OUT;;
static bool hoppingLockedIn = false;
static uint16_t sequentialHitCount = 0;
static uint16_t sequentialMissCount = 0;
static bool secondaryRecieverUsed = false;
static bool powerOnLock = false;
bool goodPacket_rx = false;
bool strongSignal = false;
// Wait for the radio to get a packet, or the timeout for the current radio channel occurs
if (!packetReady) {
if ((long)(micros() - nextAutomaticChannelSwitch) >= 0 ) { // if timed out the packet was missed, go to the next channel
if (secondaryReciever->available()) {
// missed packet but secondary radio has it so swap radios and signal packet ready
//packet will be picked up on next loop through
packetReady = true;
secondaryRecieverUsed = true;
swapRecievers();
rssi.secondaryHit();
#ifdef TEST_HARNESS
testOut.secondaryHit();
#endif
} else {
packetMissed = true;
sequentialHitCount = 0;
sequentialMissCount++;
rssi.miss();
#ifdef TEST_HARNESS
testOut.miss();
#endif
setNextRadioChannel(true); //true indicates that packet was missed
if ((long)(nextAutomaticChannelSwitch - lastRadioPacketeRecievedTime) > ((long)RESYNC_TIME_OUT)) { // if a long time passed, increase timeout duration to re-sync with the TX
telemetryEnabled = false;
#ifdef TEST_HARNESS
testOut.reSync();
#else
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Re-sync Attempt"));
}
#endif
hoppingLockedIn = false;
sequentialHitCount = 0;
sequentialMissCount = 0;
packetInterval = DEFAULT_PACKET_INTERVAL;
initialTelemetrySkipPackets = 0;
nextAutomaticChannelSwitch += RESYNC_WAIT_MICROS;
} else {
nextAutomaticChannelSwitch += packetInterval;
}
checkFailsafeDisarmTimeout(lastPacketTime,inititalGoodPacketRecieved); // at each timeout, check for failsafe and disarm. When disarmed TX must send min throttle to re-arm.
}
}
} else {
if (secondaryRecieverUsed) {
// If the secondary receiver is used, then the packet was actually received some time ago, so don't uses micros().
// Do this to prevent the timing from drifting if there are multiple packets in a row only received by the secondary receiver.
lastRadioPacketeRecievedTime = nextAutomaticChannelSwitch - INITIAL_PACKET_TIMEOUT_ADD; //Can't log the actual received time when primary missed packet, so assume it came in when expected
secondaryRecieverUsed = false;
} else {
lastRadioPacketeRecievedTime = micros(); //Use this time to calculate the next expected packet so when we miss packets we can change channels
}
if (!powerOnLock) {
// save this now while the value is latched. To save loop time only do this before initial lock as the initial lock process is the only thing that needs this
strongSignal = primaryReciever->testRPD();
}
goodPacket_rx = readAndProcessPacket();
nextAutomaticChannelSwitch = lastRadioPacketeRecievedTime + packetInterval + INITIAL_PACKET_TIMEOUT_ADD; // must ne set after readAndProcessPacket because packetInterval may get adjusted
if (!powerOnLock && !strongSignal) {
// During the initial power on lock process only consider the packet good if the signal was strong (better than -64 DBm)
goodPacket_rx = false;
}
if (goodPacket_rx) {
sequentialHitCount++;
sequentialMissCount = 0;
inititalGoodPacketRecieved = true;
lastPacketTime = micros();
failSafeMode = false;
packetMissed = false;
rssi.hit();
#ifdef TEST_HARNESS
testOut.hit();
#endif
} else {
sequentialHitCount = 0;
sequentialMissCount++;
rssi.badPacket();
packetMissed = true;
#ifdef TEST_HARNESS
testOut.badPacket();
#endif
}
}
// Below tries to detect when a false lock occurs and force a re-sync when detected in order to get a good lock.
// This happens when while syncing the NRF24L01 successfully receives a packet on an adjacent channel to the current channel,
// which locks the algorithm into the wrong place in the channel progression. If the module continues to occasionally receive a
// packet like this, a re-sync does not happen, but the packet success rate is very poor. This manifests as studdering control surfaces.
// This seems to only happen when the TX is close to the RX as the strong signal swamps the RX module.
// Checking for 5 good packets in a row to confirm lock, or 5 misses to force re-sync.
//
// For the initial lock when the receiver is powered on, the rule is much more stringent to get a lock, and all packets are flagged bad until
// the power on lock is obtained. This is so that the model cannot be controlled until the initial lock is obtained.
// This is only for the first lock. A re-sync is less stringent so that if lock is lost for a model in flight then control is easier to re-establish.
// Also, a re-sync that is not yet locked are considered good packets so that a weak re-sync can still control the model.
if (!hoppingLockedIn) {
if (!powerOnLock) {
goodPacket_rx = false; // Always consider a bad packet until initial lock is obtained so no control signals are output.
if (sequentialHitCount > (CABELL_RADIO_CHANNELS * 5) ) { // Ensure strong signal on all channels
powerOnLock = true;
hoppingLockedIn = true;
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Initial Signal Locked"));
}
}
}
else if (sequentialHitCount > 5) {
hoppingLockedIn = true;
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Signal Locked"));
}
}
if ((sequentialMissCount > 5) || (sequentialMissCount + sequentialHitCount > 100)) { // if more tnan 5 misses in a row assume it is a bad lock, or if after 100 packets there is still no lock
//if this happens then there is a bad lock and we should try to sync again.
lastRadioPacketeRecievedTime = millis() - (long)RESYNC_TIME_OUT;
nextAutomaticChannelSwitch = millis() + RESYNC_WAIT_MICROS;
telemetryEnabled = false;
setNextRadioChannel(true); //Getting the next channel ensures radios are flushed and properly waiting for a packet
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("False Signal Lock"));
}
}
}
return goodPacket_rx;
}
//--------------------------------------------------------------------------------------------------------------------------
void checkFailsafeDisarmTimeout(unsigned long lastPacketTime,bool inititalGoodPacketRecieved) {
unsigned long holdMicros = micros();
if ((long)(holdMicros - lastPacketTime) > ((long)RX_CONNECTION_TIMEOUT)) {
outputFailSafeValues(true);
}
if (((long)(holdMicros - lastPacketTime) > ((long)RX_DISARM_TIMEOUT)) || (!inititalGoodPacketRecieved && ((long)(holdMicros - lastPacketTime) > ((long)RX_DISARM_TIMEOUT)) ) ) {
if (throttleArmed) {
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Disarming throttle"));
}
throttleArmed = false;
}
}
}
//--------------------------------------------------------------------------------------------------------------------------
void outputPWM() {
channelServo[ROLL_CHANNEL].writeMicroseconds(channelValues[ROLL_CHANNEL]);
channelServo[PITCH_CHANNEL].writeMicroseconds(channelValues[PITCH_CHANNEL]);
channelServo[YAW_CHANNEL].writeMicroseconds(channelValues[YAW_CHANNEL]);
channelServo[THROTTLE_CHANNEL].writeMicroseconds(channelValues[THROTTLE_CHANNEL]);
for (uint8_t x = AUX1_CHANNEL; x < RX_NUM_CHANNELS; x++)
channelServo[x].writeMicroseconds(channelValues[x]);
}
//--------------------------------------------------------------------------------------------------------------------------
void outputSumPPM() { // output as AETR
int adjusted_x;
for(uint8_t x = 0; x < min(RX_NUM_CHANNELS,CABELL_NUM_CHANNELS) ; x++) { //
//set adjusted_x to be in AETR order
switch (x)
{
case 0:
adjusted_x = ROLL_CHANNEL;
break;
case 1:
adjusted_x = PITCH_CHANNEL;
break;
case 2:
adjusted_x = THROTTLE_CHANNEL;
break;
case 3:
adjusted_x = YAW_CHANNEL;
break;
default:
adjusted_x = x;
}
setPPMOutputChannelValue(x, channelValues[adjusted_x]);
//Serial.print(channelValues[x]); Serial.print("\t");
}
//Serial.println();
}
//--------------------------------------------------------------------------------------------------------------------------
void outputSbus() { // output as AETR
int adjusted_x;
for(uint8_t x = 0; x < CABELL_NUM_CHANNELS ; x++) { //
//set adjusted_x to be in AETR order
switch (x)
{
case 0:
adjusted_x = ROLL_CHANNEL;
break;
case 1:
adjusted_x = PITCH_CHANNEL;
break;
case 2:
adjusted_x = THROTTLE_CHANNEL;
break;
case 3:
adjusted_x = YAW_CHANNEL;
break;
default:
adjusted_x = x;
}
setSbusOutputChannelValue(x, channelValues[adjusted_x]);
}
sbusSetFailsafe(failSafeMode);
sbusSetFrameLost(packetMissed);
}
//--------------------------------------------------------------------------------------------------------------------------
void outputFailSafeValues(bool callOutputChannels) {
loadFailSafeDefaultValues();
for (uint8_t x =0; x < CABELL_NUM_CHANNELS; x++) {
channelValues[x] = failSafeChannelValues[x];
}
if (!failSafeMode) {
#ifdef TEST_HARNESS
testOut.failSafe();
#else
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Failsafe"));
}
#endif
failSafeMode = true;
}
if (callOutputChannels)
outputChannels();
}
//--------------------------------------------------------------------------------------------------------------------------
#ifndef TEST_HARNESS
ISR(TIMER1_COMPA_vect){
if (currentOutputMode == CABELL_RECIEVER_OUTPUT_PWM)
MyServoInterruptOneProcessing();
else if (currentOutputMode == CABELL_RECIEVER_OUTPUT_PPM)
SUM_PPM_ISR();
else if (currentOutputMode == CABELL_RECIEVER_OUTPUT_SBUS)
SBUS_ISR();
}
#endif
//--------------------------------------------------------------------------------------------------------------------------
void unbindReciever() {
// Reset all of flash memory to unbind receiver
uint8_t value = 0xFF;
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.print(F("Overwriting flash with value "));Serial.println(value, HEX);
}
for (int x = 0; x < 1024; x++) {
EEPROM.put(x,value);
}
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Reciever un-bound. Reboot to enter bind mode"));
}
outputFailSafeValues(true);
bool ledState = false;
while (true) { // Flash LED forever indicating unbound
digitalWrite(LED_PIN, ledState);
ledState = !ledState;
delay(250); // Fast LED flash
}
}
//--------------------------------------------------------------------------------------------------------------------------
void bindReciever(uint8_t modelNum, uint16_t tempHoldValues[], CABELL_RxTxPacket_t::RxMode_t RxMode) {
// new radio address is in channels 11 to 15
uint64_t newRadioPipeID = (((uint64_t)(tempHoldValues[11]-1000)) << 32) +
(((uint64_t)(tempHoldValues[12]-1000)) << 24) +
(((uint64_t)(tempHoldValues[13]-1000)) << 16) +
(((uint64_t)(tempHoldValues[14]-1000)) << 8) +
(((uint64_t)(tempHoldValues[15]-1000))); // Address to use after binding
if ((modelNum != currentModel) || (radioNormalRxPipeID != newRadioPipeID)) {
EEPROM.put(currentModelEEPROMAddress,modelNum);
radioNormalRxPipeID = newRadioPipeID;
EEPROM.put(radioPipeEEPROMAddress,radioNormalRxPipeID);
Serial.print(F("Bound to new TX address for model number "));Serial.println(modelNum);
digitalWrite(LED_PIN, LOW); // Turn off LED to indicate successful bind
if (RxMode == CABELL_RxTxPacket_t::RxMode_t::bindFalesafeNoPulse) {
EEPROM.put(softRebindFlagEEPROMAddress,(uint8_t)BOUND_WITH_FAILSAFE_NO_PULSES);
} else {
EEPROM.put(softRebindFlagEEPROMAddress,(uint8_t)DO_NOT_SOFT_REBIND);
}
setFailSafeDefaultValues();
outputFailSafeValues(true);
Serial.println(F("Reciever bound. Reboot to enter normal mode"));
bool ledState = false;
while (true) { // Flash LED forever indicating bound
digitalWrite(LED_PIN, ledState);
ledState = !ledState;
delay(2000); // Slow flash
}
}
}
//--------------------------------------------------------------------------------------------------------------------------
void setFailSafeDefaultValues() {
uint16_t defaultFailSafeValues[CABELL_NUM_CHANNELS];
for (int x = 0; x < CABELL_NUM_CHANNELS; x++) {
defaultFailSafeValues[x] = CHANNEL_MID_VALUE;
}
defaultFailSafeValues[THROTTLE_CHANNEL] = THROTTLE_DISARM_VALUE; // Throttle should always be the min value when failsafe}
setFailSafeValues(defaultFailSafeValues);
}
//--------------------------------------------------------------------------------------------------------------------------
void loadFailSafeDefaultValues() {
EEPROM.get(failSafeChannelValuesEEPROMAddress,failSafeChannelValues);
for (int x = 0; x < CABELL_NUM_CHANNELS; x++) {
if (failSafeChannelValues[x] < CHANNEL_MIN_VALUE || failSafeChannelValues[x] > CHANNEL_MAX_VALUE) { // Make sure failsafe values are valid
failSafeChannelValues[x] = CHANNEL_MID_VALUE;
}
}
failSafeChannelValues[THROTTLE_CHANNEL] = THROTTLE_DISARM_VALUE; // Throttle should always be the min value when failsafe
}
//--------------------------------------------------------------------------------------------------------------------------
void setFailSafeValues(uint16_t newFailsafeValues[]) {
for (int x = 0; x < CABELL_NUM_CHANNELS; x++) {
failSafeChannelValues[x] = newFailsafeValues[x];
}
failSafeChannelValues[THROTTLE_CHANNEL] = THROTTLE_DISARM_VALUE; // Throttle should always be the min value when failsafe}
EEPROM.put(failSafeChannelValuesEEPROMAddress,failSafeChannelValues);
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Fail Safe Values Set"));
}
}
//--------------------------------------------------------------------------------------------------------------------------
bool validateChecksum(CABELL_RxTxPacket_t const& packet, uint8_t maxPayloadValueIndex) {
//caculate checksum and validate
uint16_t packetSum = packet.modelNum + packet.option + packet.RxMode + packet.reserved;
for (int x = 0; x < maxPayloadValueIndex; x++) {
packetSum = packetSum + packet.payloadValue[x];
}
if (packetSum != ((((uint16_t)packet.checkSum_MSB) <<8) + (uint16_t)packet.checkSum_LSB)) {
return false; // don't take packet if checksum bad
}
else
{
return true;
}
}
//--------------------------------------------------------------------------------------------------------------------------
bool readAndProcessPacket() { //only call when a packet is available on the radio
CABELL_RxTxPacket_t RxPacket;
primaryReciever->read( &RxPacket, sizeof(RxPacket) );
int tx_channel = RxPacket.reserved & CABELL_RESERVED_MASK_CHANNEL;
if (tx_channel != 0 ) {
currentChannel = tx_channel;
}
setNextRadioChannel(false); // Also sends telemetry if in telemetry mode. Doing this as soon as possible to keep timing as tight as possible
// False indicates that packet was not missed
// Remove 8th bit from RxMode because this is a toggle bit that is not included in the checksum
// This toggle with each xmit so consecutive payloads are not identical. This is a work around for a reported bug in clone NRF24L01 chips that mis-took this case for a re-transmit of the same packet.
uint8_t* p = reinterpret_cast<uint8_t*>(&RxPacket.RxMode);
*p &= 0x7F; //ensure 8th bit is not set. This bit is not included in checksum
// putting this after setNextRadioChannel will lag by one telemetry packet, but by doing this the telemetry can be sent sooner, improving the timing
telemetryEnabled = (RxPacket.RxMode==CABELL_RxTxPacket_t::RxMode_t::normalWithTelemetry)?true:false;
bool packet_rx = false;
uint16_t tempHoldValues [CABELL_NUM_CHANNELS];
uint8_t channelReduction = constrain((RxPacket.option & CABELL_OPTION_MASK_CHANNEL_REDUCTION),0,CABELL_NUM_CHANNELS-CABELL_MIN_CHANNELS); // Must be at least 4 channels, so cap at 12
uint8_t packetSize = sizeof(RxPacket) - ((((channelReduction - (channelReduction%2))/ 2)) * 3); // reduce 3 bytes per 2 channels, but not last channel if it is odd
uint8_t maxPayloadValueIndex = sizeof(RxPacket.payloadValue) - (sizeof(RxPacket) - packetSize);
uint8_t channelsRecieved = CABELL_NUM_CHANNELS - channelReduction;
if (telemetryEnabled) { // putting this after setNextRadioChannel will lag by one telemetry packet, but by doing this the telemetry can be sent sooner, improving the timing
setTelemetryPowerMode(RxPacket.option);
packetInterval = DEFAULT_PACKET_INTERVAL + (constrain(((int16_t)channelsRecieved - (int16_t)6),(int16_t)0 ,(int16_t)10 ) * (int16_t)100); // increase packet period by 100 us for each channel over 6
} else {
packetInterval = DEFAULT_PACKET_INTERVAL;
}
packet_rx = validateChecksum(RxPacket, maxPayloadValueIndex);
if (packet_rx)
packet_rx = decodeChannelValues(RxPacket, channelsRecieved, tempHoldValues);
if (packet_rx)
packet_rx = processRxMode (RxPacket.RxMode, RxPacket.modelNum, tempHoldValues); // If bind or unbind happens, this will never return.
// if packet is good, copy the channel values
if (packet_rx) {
nextOutputMode = (RxPacket.option & CABELL_OPTION_MASK_RECIEVER_OUTPUT_MODE) >> CABELL_OPTION_SHIFT_RECIEVER_OUTPUT_MODE;
for ( int b = 0 ; b < CABELL_NUM_CHANNELS ; b ++ ) {
channelValues[b] = (b < channelsRecieved) ? tempHoldValues[b] : CHANNEL_MID_VALUE; // use the mid value for channels not received.
}
}
else
{
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println("RX Pckt Err"); // Don't use F macro here. Want this to be fast as it is in the main loop logic
}
}
return packet_rx;
}
//--------------------------------------------------------------------------------------------------------------------------
bool processRxMode (uint8_t RxMode, uint8_t modelNum, uint16_t tempHoldValues[]) {
static bool failSafeValuesHaveBeenSet = false;
bool packet_rx = true;
// fail safe settings can come in on a failsafe packet, but also use a normal packed if bind mode button is pressed after start up
if (failSafeButtonHeld()) {
if (RxMode == CABELL_RxTxPacket_t::RxMode_t::normal || RxMode == CABELL_RxTxPacket_t::RxMode_t::normalWithTelemetry) {
RxMode = CABELL_RxTxPacket_t::RxMode_t::setFailSafe;
}
}
switch (RxMode) {
case CABELL_RxTxPacket_t::RxMode_t::bindFalesafeNoPulse :
case CABELL_RxTxPacket_t::RxMode_t::bind : if (bindMode) {
bindReciever(modelNum, tempHoldValues, RxMode);
}
else
{
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Bind command detected but receiver not in bind mode"));
}
packet_rx = false;
}
break;
case CABELL_RxTxPacket_t::RxMode_t::setFailSafe : if (modelNum == currentModel) {
digitalWrite(LED_PIN, HIGH);
if (!failSafeValuesHaveBeenSet) { // only set the values first time through
failSafeValuesHaveBeenSet = true;
setFailSafeValues(tempHoldValues);
}
}
else
{
packet_rx = false;
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Wrong Model Number"));
}
}
break;
case CABELL_RxTxPacket_t::RxMode_t::normalWithTelemetry :
case CABELL_RxTxPacket_t::RxMode_t::normal : if (modelNum == currentModel) {
digitalWrite(LED_PIN, LOW);
failSafeValuesHaveBeenSet = false; // Reset when not in setFailSafe mode so next time failsafe is to be set it will take
if (!throttleArmed && (tempHoldValues[THROTTLE_CHANNEL] <= THROTTLE_DISARM_VALUE + 10) && (tempHoldValues[THROTTLE_CHANNEL] >= THROTTLE_DISARM_VALUE - 10)) {
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println("Throttle Armed"); // Don't use F macro here. Want this to be fast as it is in the main loop logic
}
throttleArmed = true;
}
}
else
{
packet_rx = false;
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Wrong Model Number"));
}
}
break;
case CABELL_RxTxPacket_t::RxMode_t::unBind : if (modelNum == currentModel) {
unbindReciever();
} else {
packet_rx = false;
if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Wrong Model Number"));
}
}
break;
default : if (currentOutputMode != CABELL_RECIEVER_OUTPUT_SBUS) {
Serial.println(F("Unknown RxMode"));
}
packet_rx = false;
break;
}
return packet_rx;
}
//--------------------------------------------------------------------------------------------------------------------------
bool decodeChannelValues(CABELL_RxTxPacket_t const& RxPacket, uint8_t channelsRecieved, uint16_t tempHoldValues[]) {
// decode the 12 bit numbers to temp array.
bool packet_rx = true;
int payloadIndex = 0;
for ( int b = 0 ; (b < channelsRecieved); b ++ ) {
tempHoldValues[b] = RxPacket.payloadValue[payloadIndex];
payloadIndex++;
tempHoldValues[b] |= ((uint16_t)RxPacket.payloadValue[payloadIndex]) <<8;
if (b % 2) { //channel number is ODD
tempHoldValues[b] = tempHoldValues[b]>>4;
payloadIndex++;
} else { //channel number is EVEN
tempHoldValues[b] &= 0x0FFF;
}
if ((tempHoldValues[b] > CHANNEL_MAX_VALUE) || (tempHoldValues[b] < CHANNEL_MIN_VALUE)) {
packet_rx = false; // throw out entire packet if any value out of range
}
}
return packet_rx;
}
//--------------------------------------------------------------------------------------------------------------------------
unsigned long sendTelemetryPacket() {
static int8_t packetCounter = 0; // this is only used for toggling bit
uint8_t sendPacket[4] = {CABELL_RxTxPacket_t::RxMode_t::telemetryResponse};
packetCounter++;
sendPacket[0] &= 0x7F; // clear 8th bit
sendPacket[0] |= packetCounter<<7; // This causes the 8th bit of the first byte to toggle with each xmit so consecutive payloads are not identical. This is a work around for a reported bug in clone NRF24L01 chips that mis-took this case for a re-transmit of the same packet.
sendPacket[1] = rssi.getRSSI();
sendPacket[2] = analogValue[0]/4; // Send a 8 bit value (0 to 255) of the analog input. Can be used for LiPo voltage or other analog input for telemetry
sendPacket[3] = analogValue[1]/4; // Send a 8 bit value (0 to 255) of the analog input. Can be used for LiPo voltage or other analog input for telemetry
uint8_t packetSize = sizeof(sendPacket);
primaryReciever->startFastWrite( &sendPacket[0], packetSize, 0);
// calculate transmit time based on packet size and data rate of 1MB per sec
// This is done because polling the status register during xmit to see when xmit is done causes issues sometimes.
// bits = packet-size * 8 + 73 bits overhead
// at 250 kbps per sec, one bit is 4 uS
// then add 140 uS which is 130 uS to begin the xmit and 10 uS fudge factor
// Add this to micros() to return when the transmit is expected to be complete
return micros() + (((((unsigned long)packetSize * 8ul) + 73ul) * 4ul) + 140ul) ;
}
//--------------------------------------------------------------------------------------------------------------------------
// based on ADC Interrupt example from https://www.gammon.com.au/adc
void ADC_Processing() { //Reads ADC value then configures next conversion. Alternates between pins A6 and A7
static byte adcPin = TELEMETRY_ANALOG_INPUT_1;
if (bit_is_clear(ADCSRA, ADSC)) {
analogValue[(adcPin==TELEMETRY_ANALOG_INPUT_1) ? 0 : 1] = ADC;
adcPin = (adcPin==TELEMETRY_ANALOG_INPUT_2) ? TELEMETRY_ANALOG_INPUT_1 : TELEMETRY_ANALOG_INPUT_2; // Choose next pin to read
ADCSRA = bit (ADEN); // turn ADC on
ADCSRA |= bit (ADPS0) | bit (ADPS1) | bit (ADPS2); // Pre-scaler of 128
ADMUX = bit (REFS0) | (adcPin & 0x07); // AVcc and select input port
ADCSRA |= bit (ADSC); //Start next conversion
}
}
//--------------------------------------------------------------------------------------------------------------------------
bool failSafeButtonHeld() {
// use the bind button because bind mode is only checked at startup. Once RX is started and not in bind mode it is the set failsafe button
static unsigned long heldTriggerTime = 0;
if(!bindMode && !digitalRead(BIND_BUTTON_PIN)) { // invert because pin is pulled up so low means pressed
if (heldTriggerTime == 0) {
heldTriggerTime = micros() + 1000000ul; // Held state achieved after button is pressed for 1 second
}
if ((long)(micros() - heldTriggerTime) >= 0) {
return true;
} else {
return false;
}
}
heldTriggerTime = 0;
return false;
}
//--------------------------------------------------------------------------------------------------------------------------
void setTelemetryPowerMode(uint8_t option) {
// Set transmit power to max or high based on the option byte in the incoming packet.
// This should set the power the same as the transmitter module
static uint8_t prevPower = RF24_PA_MIN;
uint8_t newPower;
if ((option & CABELL_OPTION_MASK_MAX_POWER_OVERRIDE) == 0) {
newPower = RF24_PA_HIGH;
} else {
newPower = RF24_PA_MAX;
}
if (newPower != prevPower) {
primaryReciever->setPALevel(newPower);
secondaryReciever->setPALevel(newPower);
prevPower = newPower;
}
}
//--------------------------------------------------------------------------------------------------------------------------
void initializeRadio(My_RF24* radioPointer) {
radioPointer->maskIRQ(true,true,true); // Mask all interrupts. RX interrupt (the only one we use) gets turned on after channel change
radioPointer->enableDynamicPayloads();
radioPointer->setDataRate(RF24_250KBPS );
radioPointer->setChannel(0); // start out on a channel we don't use so we don't start receiving packets yet. It will get changed when the looping starts
radioPointer->setAutoAck(0);
radioPointer->openWritingPipe(~radioPipeID); // Invert bits for writing pipe so that telemetry packets transmit with a different pipe ID.
radioPointer->openReadingPipe(1,radioPipeID);
radioPointer->startListening();
radioPointer->csDelay = 0; //Can be reduced to 0 because we use interrupts and timing instead of polling through SPI
radioPointer->txDelay = 0; // Timing works out so a delay is not needed
//Stop listening to set up module for writing then take a copy of the config register so we can change to write mode more quickly when sending telemetry packets
radioPointer->stopListening();
radioConfigRegisterForTX = radioPointer->read_register(NRF_CONFIG); // This saves the config register state with all interrupts masked and in TX mode. Used to switch quickly to TX mode for telemetry
radioPointer->startListening();
radioConfigRegisterForRX_IRQ_Masked = radioPointer->read_register(NRF_CONFIG); // This saves the config register state with all interrupts masked and in RX mode. Used to switch secondary radio quickly to RX after channel change
radioPointer->maskIRQ(true,true,false);
radioConfigRegisterForRX_IRQ_On = radioPointer->read_register(NRF_CONFIG); // This saves the config register state with Read Interrupt ON and in RX mode. Used to switch primary radio quickly to RX after channel change
radioPointer->maskIRQ(true,true,true);
}
//--------------------------------------------------------------------------------------------------------------------------
void swapRecievers() {
My_RF24* hold = NULL;
hold = primaryReciever;
primaryReciever = secondaryReciever;
secondaryReciever = hold;
}