-
Notifications
You must be signed in to change notification settings - Fork 4
/
MySoftwareSerial.cpp
606 lines (516 loc) · 15.8 KB
/
MySoftwareSerial.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*
SoftwareSerial.cpp (formerly NewSoftSerial.cpp) -
Multi-instance software serial library for Arduino/Wiring
-- Interrupt-driven receive and other improvements by ladyada
(http://ladyada.net)
-- Tuning, circular buffer, derivation from class Print/Stream,
multi-instance support, porting to 8MHz processors,
various optimizations, PROGMEM delay tables, inverse logic and
direct port writing by Mikal Hart (http://www.arduiniana.org)
-- Pin change interrupt macros by Paul Stoffregen (http://www.pjrc.com)
-- 20MHz processor support by Garrett Mace (http://www.macetech.com)
-- ATmega1280/2560 support by Brett Hagman (http://www.roguerobotics.com/)
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
The latest version of this library can always be found at
http://arduiniana.org.
*/
// When set, _DEBUG co-opts pins 11 and 13 for debugging with an
// oscilloscope or logic analyzer. Beware: it also slightly modifies
// the bit times, so don't rely on it too much at high baud rates
#define _DEBUG 0
#define _DEBUG_PIN1 11
#define _DEBUG_PIN2 13
//
// Includes
//
#include <avr/interrupt.h>
#include <avr/pgmspace.h>
#include <Arduino.h>
#include "MySoftwareSerial.h"
#include <util/delay_basic.h>
//
// Statics
//
MySoftwareSerial *MySoftwareSerial::active_object = 0;
char MySoftwareSerial::_receive_buffer[_SS_MAX_RX_BUFF];
volatile uint8_t MySoftwareSerial::_receive_buffer_tail = 0;
volatile uint8_t MySoftwareSerial::_receive_buffer_head = 0;
//
// Debugging
//
// This function generates a brief pulse
// for debugging or measuring on an oscilloscope.
#if _DEBUG
inline void DebugPulse(uint8_t pin, uint8_t count)
{
volatile uint8_t *pport = portOutputRegister(digitalPinToPort(pin));
uint8_t val = *pport;
while (count--)
{
*pport = val | digitalPinToBitMask(pin);
*pport = val;
}
}
#else
inline void DebugPulse(uint8_t, uint8_t) {}
#endif
//
// Private methods
//
/* static */
inline void MySoftwareSerial::tunedDelay(uint16_t delay) {
_delay_loop_2(delay);
}
// This function sets the current object as the "listening"
// one and returns true if it replaces another
bool MySoftwareSerial::listen()
{
if (!_rx_delay_stopbit)
return false;
if (active_object != this)
{
if (active_object)
active_object->stopListening();
_buffer_overflow = false;
_receive_buffer_head = _receive_buffer_tail = 0;
active_object = this;
setRxIntMsk(true);
return true;
}
return false;
}
// Stop listening. Returns true if we were actually listening.
bool MySoftwareSerial::stopListening()
{
if (active_object == this)
{
setRxIntMsk(false);
active_object = NULL;
return true;
}
return false;
}
//
// The receive routine called by the interrupt handler
//
void MySoftwareSerial::recv()
{
#if GCC_VERSION < 40302
// Work-around for avr-gcc 4.3.0 OSX version bug
// Preserve the registers that the compiler misses
// (courtesy of Arduino forum user *etracer*)
asm volatile(
"push r18 \n\t"
"push r19 \n\t"
"push r20 \n\t"
"push r21 \n\t"
"push r22 \n\t"
"push r23 \n\t"
"push r26 \n\t"
"push r27 \n\t"
::);
#endif
uint8_t d = 0;
// If RX line is high, then we don't see any start bit
// so interrupt is probably not for us
if (_inverse_logic ? rx_pin_read() : !rx_pin_read())
{
// Disable further interrupts during reception, this prevents
// triggering another interrupt directly after we return, which can
// cause problems at higher baudrates.
setRxIntMsk(false);
// Wait approximately 1/2 of a bit width to "center" the sample
tunedDelay(_rx_delay_centering);
DebugPulse(_DEBUG_PIN2, 1);
// Read each of the 8 bits
for (uint8_t i=8; i > 0; --i)
{
tunedDelay(_rx_delay_intrabit);
d >>= 1;
DebugPulse(_DEBUG_PIN2, 1);
if (rx_pin_read())
d |= 0x80;
}
if (_inverse_logic)
d = ~d;
// if buffer full, set the overflow flag and return
uint8_t next = (_receive_buffer_tail + 1) % _SS_MAX_RX_BUFF;
if (next != _receive_buffer_head)
{
// save new data in buffer: tail points to where byte goes
_receive_buffer[_receive_buffer_tail] = d; // save new byte
_receive_buffer_tail = next;
}
else
{
DebugPulse(_DEBUG_PIN1, 1);
_buffer_overflow = true;
}
// skip the stop bit
tunedDelay(_rx_delay_stopbit);
DebugPulse(_DEBUG_PIN1, 1);
// Re-enable interrupts when we're sure to be inside the stop bit
setRxIntMsk(true);
}
#if GCC_VERSION < 40302
// Work-around for avr-gcc 4.3.0 OSX version bug
// Restore the registers that the compiler misses
asm volatile(
"pop r27 \n\t"
"pop r26 \n\t"
"pop r23 \n\t"
"pop r22 \n\t"
"pop r21 \n\t"
"pop r20 \n\t"
"pop r19 \n\t"
"pop r18 \n\t"
::);
#endif
}
uint8_t MySoftwareSerial::rx_pin_read()
{
return *_receivePortRegister & _receiveBitMask;
}
//
// Interrupt handling
//
/* static */
inline void MySoftwareSerial::handle_interrupt()
{
if (active_object)
{
active_object->recv();
}
}
#if defined(PCINT0_vect)
ISR(PCINT0_vect)
{
MySoftwareSerial::handle_interrupt();
}
#endif
#if defined(PCINT1_vect)
ISR(PCINT1_vect, ISR_ALIASOF(PCINT0_vect));
#endif
#if defined(PCINT2_vect)
ISR(PCINT2_vect, ISR_ALIASOF(PCINT0_vect));
#endif
#if defined(PCINT3_vect)
ISR(PCINT3_vect, ISR_ALIASOF(PCINT0_vect));
#endif
//
// Constructor
//
MySoftwareSerial::MySoftwareSerial(uint8_t receivePin, uint8_t transmitPin, bool inverse_logic /* = false */) :
_rx_delay_centering(0),
_rx_delay_intrabit(0),
_rx_delay_stopbit(0),
_tx_delay(0),
_buffer_overflow(false),
_inverse_logic(inverse_logic),
_parity(0),
_stopBits(1),
_dataBits(8)
{
setTX(transmitPin);
setRX(receivePin);
}
//
// Destructor
//
MySoftwareSerial::~MySoftwareSerial()
{
end();
}
void MySoftwareSerial::setTX(uint8_t tx)
{
// First write, then set output. If we do this the other way around,
// the pin would be output low for a short while before switching to
// output hihg. Now, it is input with pullup for a short while, which
// is fine. With inverse logic, either order is fine.
digitalWrite(tx, _inverse_logic ? LOW : HIGH);
pinMode(tx, OUTPUT);
_transmitBitMask = digitalPinToBitMask(tx);
uint8_t port = digitalPinToPort(tx);
_transmitPortRegister = portOutputRegister(port);
}
void MySoftwareSerial::setRX(uint8_t rx)
{
pinMode(rx, INPUT);
if (!_inverse_logic)
digitalWrite(rx, HIGH); // pullup for normal logic!
_receivePin = rx;
_receiveBitMask = digitalPinToBitMask(rx);
uint8_t port = digitalPinToPort(rx);
_receivePortRegister = portInputRegister(port);
}
uint16_t MySoftwareSerial::subtract_cap(uint16_t num, uint16_t sub) {
if (num > sub)
return num - sub;
else
return 1;
}
//
// Public methods
//
void MySoftwareSerial::begin(long speed)
{
_rx_delay_centering = _rx_delay_intrabit = _rx_delay_stopbit = _tx_delay = 0;
// Precalculate the various delays, in number of 4-cycle delays
uint16_t bit_delay = (F_CPU / speed) / 4;
// 12 (gcc 4.8.2) or 13 (gcc 4.3.2) cycles from start bit to first bit,
// 15 (gcc 4.8.2) or 16 (gcc 4.3.2) cycles between bits,
// 12 (gcc 4.8.2) or 14 (gcc 4.3.2) cycles from last bit to stop bit
// These are all close enough to just use 15 cycles, since the inter-bit
// timings are the most critical (deviations stack 8 times)
_tx_delay = subtract_cap(bit_delay, 15 / 4);
// Only setup rx when we have a valid PCINT for this pin
if (digitalPinToPCICR(_receivePin)) {
#if GCC_VERSION > 40800
// Timings counted from gcc 4.8.2 output. This works up to 115200 on
// 16Mhz and 57600 on 8Mhz.
//
// When the start bit occurs, there are 3 or 4 cycles before the
// interrupt flag is set, 4 cycles before the PC is set to the right
// interrupt vector address and the old PC is pushed on the stack,
// and then 75 cycles of instructions (including the RJMP in the
// ISR vector table) until the first delay. After the delay, there
// are 17 more cycles until the pin value is read (excluding the
// delay in the loop).
// We want to have a total delay of 1.5 bit time. Inside the loop,
// we already wait for 1 bit time - 23 cycles, so here we wait for
// 0.5 bit time - (71 + 18 - 22) cycles.
_rx_delay_centering = subtract_cap(bit_delay / 2, (4 + 4 + 75 + 17 - 23) / 4);
// There are 23 cycles in each loop iteration (excluding the delay)
_rx_delay_intrabit = subtract_cap(bit_delay, 23 / 4);
// There are 37 cycles from the last bit read to the start of
// stopbit delay and 11 cycles from the delay until the interrupt
// mask is enabled again (which _must_ happen during the stopbit).
// This delay aims at 3/4 of a bit time, meaning the end of the
// delay will be at 1/4th of the stopbit. This allows some extra
// time for ISR cleanup, which makes 115200 baud at 16Mhz work more
// reliably
_rx_delay_stopbit = subtract_cap(bit_delay * 3 / 4, (37 + 11) / 4);
#else // Timings counted from gcc 4.3.2 output
// Note that this code is a _lot_ slower, mostly due to bad register
// allocation choices of gcc. This works up to 57600 on 16Mhz and
// 38400 on 8Mhz.
_rx_delay_centering = subtract_cap(bit_delay / 2, (4 + 4 + 97 + 29 - 11) / 4);
_rx_delay_intrabit = subtract_cap(bit_delay, 11 / 4);
_rx_delay_stopbit = subtract_cap(bit_delay * 3 / 4, (44 + 17) / 4);
#endif
// Enable the PCINT for the entire port here, but never disable it
// (others might also need it, so we disable the interrupt by using
// the per-pin PCMSK register).
*digitalPinToPCICR(_receivePin) |= _BV(digitalPinToPCICRbit(_receivePin));
// Precalculate the pcint mask register and value, so setRxIntMask
// can be used inside the ISR without costing too much time.
_pcint_maskreg = digitalPinToPCMSK(_receivePin);
_pcint_maskvalue = _BV(digitalPinToPCMSKbit(_receivePin));
tunedDelay(_tx_delay); // if we were low this establishes the end
}
#if _DEBUG
pinMode(_DEBUG_PIN1, OUTPUT);
pinMode(_DEBUG_PIN2, OUTPUT);
#endif
listen();
}
void MySoftwareSerial::setRxIntMsk(bool enable)
{
if (enable)
*_pcint_maskreg |= _pcint_maskvalue;
else
*_pcint_maskreg &= ~_pcint_maskvalue;
}
void MySoftwareSerial::end()
{
stopListening();
}
// Read data from buffer
int MySoftwareSerial::read()
{
if (!isListening())
return -1;
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail)
return -1;
// Read from "head"
uint8_t d = _receive_buffer[_receive_buffer_head]; // grab next byte
_receive_buffer_head = (_receive_buffer_head + 1) % _SS_MAX_RX_BUFF;
return d;
}
int MySoftwareSerial::available()
{
if (!isListening())
return 0;
return (_receive_buffer_tail + _SS_MAX_RX_BUFF - _receive_buffer_head) % _SS_MAX_RX_BUFF;
}
size_t MySoftwareSerial::write(uint8_t b)
{
if (_tx_delay == 0) {
setWriteError();
return 0;
}
uint16_t bitBuf;
uint8_t bitsToSend = _dataBits;
if (_parity == PARITY_EVEN || _parity == PARITY_ODD) {
bitBuf = calcParity(b,_dataBits);
bitsToSend++;
} else {
bitBuf = b;
}
// By declaring these as local variables, the compiler will put them
// in registers _before_ disabling interrupts and entering the
// critical timing sections below, which makes it a lot easier to
// verify the cycle timings
volatile uint8_t *reg = _transmitPortRegister;
uint8_t reg_mask = _transmitBitMask;
uint8_t inv_mask = ~_transmitBitMask;
uint8_t oldSREG = SREG;
bool inv = _inverse_logic;
uint16_t delay = _tx_delay;
if (inv)
bitBuf = ~bitBuf;
cli(); // turn off interrupts for a clean txmit
// Write the start bit
if (inv)
*reg |= reg_mask;
else
*reg &= inv_mask;
tunedDelay(delay);
// Write each of the 8 bits
for (uint8_t i = 8; i > 0; --i)
{
if (bitBuf & 1) // choose bit
*reg |= reg_mask; // send 1
else
*reg &= inv_mask; // send 0
tunedDelay(delay);
bitBuf >>= 1;
}
// restore pin to natural state
if (inv)
*reg &= inv_mask;
else
*reg |= reg_mask;
SREG = oldSREG; // turn interrupts back on
tunedDelay(_tx_delay * _stopBits);
return 1;
}
// Writes up to 32 bytes as fast as possible
void MySoftwareSerial::writeBuffer32( const void* buf, uint8_t data_len )
{
uint16_t bitBuf[32];
uint8_t bitsToSend = ((_parity==PARITY_NONE) ? 0 : 1 ) + _dataBits + _stopBits;
const uint8_t* current = reinterpret_cast<const uint8_t*>(buf);
uint8_t oldSREG = SREG;
for (int x = 0; x < min(data_len,32); x++) {
if (_parity == PARITY_EVEN || _parity == PARITY_ODD) {
bitBuf[x] = calcParity(*current++,_dataBits);
} else {
bitBuf[x] = *current++;
}
// add in stop bits
for (int i = 0; i < _stopBits; i++) {
bitBuf[x] |= 0x0001 << (bitsToSend - _stopBits + i);
}
if (_inverse_logic)
bitBuf[x] = ~bitBuf[x];
}
unsigned long int aaa;
uint8_t x = 0;
cli(); // turn off interrupts for a clean txmit
while ( data_len-- ) writeBits(bitBuf[x++],bitsToSend);
SREG = oldSREG; // turn interrupts back on
}
void MySoftwareSerial::writeBits(uint16_t bitBuf, uint8_t bitsToSend)
{
// By declaring these as local variables, the compiler will put them
// in registers _before_ disabling interrupts and entering the
// critical timing sections below, which makes it a lot easier to
// verify the cycle timings
volatile uint8_t *reg = _transmitPortRegister;
uint8_t reg_mask = _transmitBitMask;
uint8_t inv_mask = ~_transmitBitMask;
bool inv = _inverse_logic;
uint16_t delay = _tx_delay;
// Write the start bit
if (inv)
*reg |= reg_mask;
else
*reg &= inv_mask;
tunedDelay(delay);
// Write each of the bits
for (uint8_t i = 0; i < bitsToSend; i++)
{
if (bitBuf & 1) // choose bit
*reg |= reg_mask; // send 1
else
*reg &= inv_mask; // send 0
tunedDelay(delay);
bitBuf >>= 1;
}
// restore pin to natural state happens by the stop bits included in the butBuf
}
void MySoftwareSerial::flush()
{
// There is no tx buffering, simply return
}
int MySoftwareSerial::peek()
{
if (!isListening())
return -1;
// Empty buffer?
if (_receive_buffer_head == _receive_buffer_tail)
return -1;
// Read from "head"
return _receive_buffer[_receive_buffer_head];
}
void MySoftwareSerial::setDataBits(uint8_t dataBits)
{
_dataBits = constrain(dataBits,5,8);
}
uint8_t MySoftwareSerial::getDataBits()
{
return _dataBits;
}
void MySoftwareSerial::setStopBits(uint8_t stopBits)
{
_stopBits = constrain(stopBits,1,2);
}
uint8_t MySoftwareSerial::getStopBits()
{
return _stopBits;
}
void MySoftwareSerial::setParity(uint8_t parity)
{
_parity = constrain(parity,0,2);
}
uint8_t MySoftwareSerial::getParity()
{
return _parity;
}
uint16_t MySoftwareSerial::calcParity(uint8_t b, uint8_t dataBits)
{
uint8_t onesCount = 0;
uint16_t holdData = ((uint16_t)(b<<(8-dataBits)))>>(8-dataBits); // Clear bits to the left of the data bits and store in larget field so there is room to add parity bit
for (uint8_t x = 0; x < dataBits; x++) {
if (b & 0x01) onesCount++;
b >>= 1;
}
if (onesCount % 2) { // odd number of bits
if (_parity == PARITY_EVEN) holdData |= 0x0001<<dataBits;
} else {
if (_parity == PARITY_ODD ) holdData |= 0x0001<<dataBits;
}
return holdData;
}