-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlayers.py
118 lines (99 loc) · 3.69 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#!/usr/bin/env python
import argparse
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training
from chainer.training import extensions
import chainerx
_TEST_E = 1e-5
_DO_TEST = False
class VerifiableExample(chainer.Chain): # Example
def __init__(self, *args, **kwargs):
super(VerifiableExample, self).__init__(
*args, **kwargs)
def forward(self, x):
y = super(VerifiableExample, self).__call__(x)
if not(hasattr(x, 'lower') and hasattr(x, 'upper')):
# return y
raise NotImplementedError
# y, lower, upper = ...
# y.lower = lower
# y.upper = upper
# return y
raise NotImplementedError
def verifiable_relu(x):
# Standard call
y = F.relu(x)
if not(hasattr(x, 'lower') and hasattr(x, 'upper')):
return y
# Call with bounds
y.lower, y.upper = F.relu(x.lower), F.relu(x.upper)
if _DO_TEST:
xp = chainer.cuda.get_array_module(x)
xp.testing.assert_array_less(y.lower.array, y.array + _TEST_E)
xp.testing.assert_array_less(y.array, y.upper.array + _TEST_E)
return y
def verifiable_sigmoid(x):
# Standard call
y = F.sigmoid(x)
if not(hasattr(x, 'lower') and hasattr(x, 'upper')):
return y
# Call with bounds
y.lower, y.upper = F.sigmoid(x.lower), F.sigmoid(x.upper)
if _DO_TEST:
xp = chainer.cuda.get_array_module(x)
xp.testing.assert_array_less(y.lower.array, y.array + _TEST_E)
xp.testing.assert_array_less(y.array, y.upper.array + _TEST_E)
return y
class VerifiableLinear(L.Linear):
def __init__(self, *args, **kwargs):
super(VerifiableLinear, self).__init__(
*args, **kwargs)
def forward(self, x, n_batch_axes=1):
if n_batch_axes != 1:
raise NotImplementedError
if self.W.array is None:
in_size = chainer.utils.size_of_shape(x.shape[n_batch_axes:])
self._initialize_params(in_size)
# Standard call
y = super(VerifiableLinear, self).forward(x)
if not(hasattr(x, 'lower') and hasattr(x, 'upper')):
return y
# Call with bounds
lower, upper = x.lower, x.upper
c = (lower + upper) / 2.
r = (upper - lower) / 2.
c = F.linear(c, self.W, self.b, n_batch_axes=n_batch_axes)
r = F.linear(r, abs(self.W), b=None, n_batch_axes=n_batch_axes)
y.lower = c - r
y.upper = c + r
if _DO_TEST:
self.xp.testing.assert_array_less(y.lower.array, y.array + _TEST_E)
self.xp.testing.assert_array_less(y.array, y.upper.array + _TEST_E)
return y
class VerifiableConvolution2D(L.Convolution2D):
def __init__(self, *args, **kwargs):
super(VerifiableConvolution2D, self).__init__(
*args, **kwargs)
def forward(self, x):
if self.W.array is None:
self._initialize_params(x.shape[1])
# Standard call
y = super(VerifiableConvolution2D, self).forward(x)
if not(hasattr(x, 'lower') and hasattr(x, 'upper')):
return y
# Call with bounds
lower, upper = x.lower, x.upper
c = (lower + upper) / 2.
r = (upper - lower) / 2.
c = F.convolution_2d(c, self.W, b=self.b,
stride=self.stride, pad=self.pad)
r = F.convolution_2d(r, abs(self.W), b=None,
stride=self.stride, pad=self.pad)
y.lower = c - r
y.upper = c + r
if _DO_TEST:
self.xp.testing.assert_array_less(y.lower.array, y.array + _TEST_E)
self.xp.testing.assert_array_less(y.array, y.upper.array + _TEST_E)
return y