forked from anujdutt9/Disease-Prediction-from-Symptoms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
169 lines (149 loc) · 6.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Import Dependencies
import yaml
from joblib import dump, load
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
# Naive Bayes Approach
from sklearn.naive_bayes import MultinomialNB
# Trees Approach
from sklearn.tree import DecisionTreeClassifier
# Ensemble Approach
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
import seaborn as sn
import matplotlib.pyplot as plt
class DiseasePrediction:
# Initialize and Load the Config File
def __init__(self, model_name=None):
# Load Config File
try:
with open('./config.yaml', 'r') as f:
self.config = yaml.safe_load(f)
except Exception as e:
print("Error reading Config file...")
# Verbose
self.verbose = self.config['verbose']
# Load Training Data
self.train_features, self.train_labels, self.train_df = self._load_train_dataset()
# Load Test Data
self.test_features, self.test_labels, self.test_df = self._load_test_dataset()
# Feature Correlation in Training Data
self._feature_correlation(data_frame=self.train_df, show_fig=False)
# Model Definition
self.model_name = model_name
# Model Save Path
self.model_save_path = self.config['model_save_path']
# Function to Load Train Dataset
def _load_train_dataset(self):
df_train = pd.read_csv(self.config['dataset']['training_data_path'])
cols = df_train.columns
cols = cols[:-2]
train_features = df_train[cols]
train_labels = df_train['prognosis']
# Check for data sanity
assert (len(train_features.iloc[0]) == 132)
assert (len(train_labels) == train_features.shape[0])
if self.verbose:
print("Length of Training Data: ", df_train.shape)
print("Training Features: ", train_features.shape)
print("Training Labels: ", train_labels.shape)
return train_features, train_labels, df_train
# Function to Load Test Dataset
def _load_test_dataset(self):
df_test = pd.read_csv(self.config['dataset']['test_data_path'])
cols = df_test.columns
cols = cols[:-1]
test_features = df_test[cols]
test_labels = df_test['prognosis']
# Check for data sanity
assert (len(test_features.iloc[0]) == 132)
assert (len(test_labels) == test_features.shape[0])
if self.verbose:
print("Length of Test Data: ", df_test.shape)
print("Test Features: ", test_features.shape)
print("Test Labels: ", test_labels.shape)
return test_features, test_labels, df_test
# Features Correlation
def _feature_correlation(self, data_frame=None, show_fig=False):
# Get Feature Correlation
corr = data_frame.corr()
sn.heatmap(corr, square=True, annot=False, cmap="YlGnBu")
plt.title("Feature Correlation")
plt.tight_layout()
#plt.show()
plt.savefig('feature_correlation.png')
# Dataset Train Validation Split
def _train_val_split(self):
X_train, X_val, y_train, y_val = train_test_split(self.train_features, self.train_labels,
test_size=self.config['dataset']['validation_size'],
random_state=self.config['random_state'])
if self.verbose:
print("Number of Training Features: {0}\tNumber of Training Labels: {1}".format(len(X_train), len(y_train)))
print("Number of Validation Features: {0}\tNumber of Validation Labels: {1}".format(len(X_val), len(y_val)))
return X_train, y_train, X_val, y_val
# Model Selection
def select_model(self):
if self.model_name == 'mnb':
self.clf = MultinomialNB()
elif self.model_name == 'decision_tree':
self.clf = DecisionTreeClassifier(criterion=self.config['model']['decision_tree']['criterion'])
elif self.model_name == 'random_forest':
self.clf = RandomForestClassifier(n_estimators=self.config['model']['random_forest']['n_estimators'])
elif self.model_name == 'gradient_boost':
self.clf = GradientBoostingClassifier(n_estimators=self.config['model']['gradient_boost']['n_estimators'],
criterion=self.config['model']['gradient_boost']['criterion'])
return self.clf
# ML Model
def train_model(self):
# Get the Data
X_train, y_train, X_val, y_val = self._train_val_split()
classifier = self.select_model()
# Training the Model
classifier = classifier.fit(X_train, y_train)
# Trained Model Evaluation on Validation Dataset
confidence = classifier.score(X_val, y_val)
# Validation Data Prediction
y_pred = classifier.predict(X_val)
# Model Validation Accuracy
accuracy = accuracy_score(y_val, y_pred)
# Model Confusion Matrix
conf_mat = confusion_matrix(y_val, y_pred)
# Model Classification Report
clf_report = classification_report(y_val, y_pred)
# Model Cross Validation Score
score = cross_val_score(classifier, X_val, y_val, cv=3)
if self.verbose:
print('\nTraining Accuracy: ', confidence)
print('\nValidation Prediction: ', y_pred)
print('\nValidation Accuracy: ', accuracy)
print('\nValidation Confusion Matrix: \n', conf_mat)
print('\nCross Validation Score: \n', score)
print('\nClassification Report: \n', clf_report)
# Save Trained Model
dump(classifier, str(self.model_save_path + self.model_name + ".joblib"))
# Function to Make Predictions on Test Data
def make_prediction(self, saved_model_name=None, test_data=None):
try:
# Load Trained Model
clf = load(str(self.model_save_path + saved_model_name + ".joblib"))
except Exception as e:
print("Model not found...")
if test_data is not None:
result = clf.predict(test_data)
return result
else:
result = clf.predict(self.test_features)
accuracy = accuracy_score(self.test_labels, result)
clf_report = classification_report(self.test_labels, result)
return accuracy, clf_report
if __name__ == "__main__":
# Model Currently Training
current_model_name = 'decision_tree'
# Instantiate the Class
dp = DiseasePrediction(model_name=current_model_name)
# Train the Model
dp.train_model()
# Get Model Performance on Test Data
test_accuracy, classification_report = dp.make_prediction(saved_model_name=current_model_name)
print("Model Test Accuracy: ", test_accuracy)
print("Test Data Classification Report: \n", classification_report)