Skip to content

Commit 49df625

Browse files
authored
Update vectordbs doc,batching-strategy is remove (#2550)
Signed-off-by: Xwh <[email protected]>
1 parent e888895 commit 49df625

File tree

6 files changed

+0
-12
lines changed

6 files changed

+0
-12
lines changed

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/elasticsearch.adoc

-2
Original file line numberDiff line numberDiff line change
@@ -127,7 +127,6 @@ spring:
127127
index-name: custom-index
128128
dimensions: 1536
129129
similarity: cosine
130-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
131130
----
132131

133132
The Spring Boot properties starting with `spring.elasticsearch.*` are used to configure the Elasticsearch client:
@@ -158,7 +157,6 @@ Properties starting with `spring.ai.vectorstore.elasticsearch.*` are used to con
158157
|`spring.ai.vectorstore.elasticsearch.index-name` | The name of the index to store the vectors | `spring-ai-document-index`
159158
|`spring.ai.vectorstore.elasticsearch.dimensions` | The number of dimensions in the vector | `1536`
160159
|`spring.ai.vectorstore.elasticsearch.similarity` | The similarity function to use | `cosine`
161-
|`spring.ai.vectorstore.elasticsearch.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
162160
|===
163161

164162
The following similarity functions are available:

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/neo4j.adoc

-2
Original file line numberDiff line numberDiff line change
@@ -102,7 +102,6 @@ spring:
102102
index-name: custom-index
103103
dimensions: 1536
104104
distance-type: cosine
105-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
106105
----
107106

108107
The Spring Boot properties starting with `spring.neo4j.*` are used to configure the Neo4j client:
@@ -129,7 +128,6 @@ Properties starting with `spring.ai.vectorstore.neo4j.*` are used to configure t
129128
|`spring.ai.vectorstore.neo4j.distance-type` | The distance function to use | `cosine`
130129
|`spring.ai.vectorstore.neo4j.label` | The label used for document nodes | `Document`
131130
|`spring.ai.vectorstore.neo4j.embedding-property` | The property name used to store embeddings | `embedding`
132-
|`spring.ai.vectorstore.neo4j.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
133131
|===
134132

135133
The following distance functions are available:

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/opensearch.adoc

-2
Original file line numberDiff line numberDiff line change
@@ -103,7 +103,6 @@ spring:
103103
index-name: spring-ai-document-index
104104
initialize-schema: true
105105
similarity-function: cosinesimil
106-
batching-strategy: TOKEN_COUNT
107106
aws: # Only for Amazon OpenSearch Service
108107
host: <aws opensearch host>
109108
service-name: <aws service name>
@@ -124,7 +123,6 @@ Properties starting with `spring.ai.vectorstore.opensearch.*` are used to config
124123
|`spring.ai.vectorstore.opensearch.index-name`| Name of the index to store vectors | `spring-ai-document-index`
125124
|`spring.ai.vectorstore.opensearch.initialize-schema`| Whether to initialize the required schema | `false`
126125
|`spring.ai.vectorstore.opensearch.similarity-function`| The similarity function to use | `cosinesimil`
127-
|`spring.ai.vectorstore.opensearch.batching-strategy`| Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
128126
|`spring.ai.vectorstore.opensearch.aws.host`| Hostname of the OpenSearch instance | -
129127
|`spring.ai.vectorstore.opensearch.aws.service-name`| AWS service name | -
130128
|`spring.ai.vectorstore.opensearch.aws.access-key`| AWS access key | -

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/pgvector.adoc

-2
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,6 @@ spring:
106106
index-type: HNSW
107107
distance-type: COSINE_DISTANCE
108108
dimensions: 1536
109-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
110109
max-document-batch-size: 10000 # Optional: Maximum number of documents per batch
111110
----
112111

@@ -153,7 +152,6 @@ You can use the following properties in your Spring Boot configuration to custom
153152
|`spring.ai.vectorstore.pgvector.schema-name` | Vector store schema name | `public`
154153
|`spring.ai.vectorstore.pgvector.table-name` | Vector store table name | `vector_store`
155154
|`spring.ai.vectorstore.pgvector.schema-validation` | Enables schema and table name validation to ensure they are valid and existing objects. | false
156-
|`spring.ai.vectorstore.pgvector.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE`. | TOKEN_COUNT
157155
|`spring.ai.vectorstore.pgvector.max-document-batch-size` | Maximum number of documents to process in a single batch. | 10000
158156

159157
|===

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/qdrant.adoc

-2
Original file line numberDiff line numberDiff line change
@@ -90,7 +90,6 @@ spring:
9090
collection-name: <collection name>
9191
use-tls: false
9292
initialize-schema: true
93-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
9493
----
9594

9695
Properties starting with `spring.ai.vectorstore.qdrant.*` are used to configure the `QdrantVectorStore`:
@@ -105,7 +104,6 @@ Properties starting with `spring.ai.vectorstore.qdrant.*` are used to configure
105104
|`spring.ai.vectorstore.qdrant.collection-name`| The name of the collection to use | `vector_store`
106105
|`spring.ai.vectorstore.qdrant.use-tls`| Whether to use TLS(HTTPS) | `false`
107106
|`spring.ai.vectorstore.qdrant.initialize-schema`| Whether to initialize the schema | `false`
108-
|`spring.ai.vectorstore.qdrant.batching-strategy`| Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
109107
|===
110108

111109
== Manual Configuration

spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/redis.adoc

-2
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,6 @@ spring:
9797
initialize-schema: true
9898
index-name: custom-index
9999
prefix: custom-prefix
100-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
101100
----
102101

103102
Properties starting with `spring.ai.vectorstore.redis.*` are used to configure the `RedisVectorStore`:
@@ -109,7 +108,6 @@ Properties starting with `spring.ai.vectorstore.redis.*` are used to configure t
109108
|`spring.ai.vectorstore.redis.initialize-schema`| Whether to initialize the required schema | `false`
110109
|`spring.ai.vectorstore.redis.index-name` | The name of the index to store the vectors | `spring-ai-index`
111110
|`spring.ai.vectorstore.redis.prefix` | The prefix for Redis keys | `embedding:`
112-
|`spring.ai.vectorstore.redis.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
113111
|===
114112

115113
== Metadata Filtering

0 commit comments

Comments
 (0)