You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/elasticsearch.adoc
-2
Original file line number
Diff line number
Diff line change
@@ -127,7 +127,6 @@ spring:
127
127
index-name: custom-index
128
128
dimensions: 1536
129
129
similarity: cosine
130
-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
131
130
----
132
131
133
132
The Spring Boot properties starting with `spring.elasticsearch.*` are used to configure the Elasticsearch client:
@@ -158,7 +157,6 @@ Properties starting with `spring.ai.vectorstore.elasticsearch.*` are used to con
158
157
|`spring.ai.vectorstore.elasticsearch.index-name` | The name of the index to store the vectors | `spring-ai-document-index`
159
158
|`spring.ai.vectorstore.elasticsearch.dimensions` | The number of dimensions in the vector | `1536`
160
159
|`spring.ai.vectorstore.elasticsearch.similarity` | The similarity function to use | `cosine`
161
-
|`spring.ai.vectorstore.elasticsearch.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/neo4j.adoc
-2
Original file line number
Diff line number
Diff line change
@@ -102,7 +102,6 @@ spring:
102
102
index-name: custom-index
103
103
dimensions: 1536
104
104
distance-type: cosine
105
-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
106
105
----
107
106
108
107
The Spring Boot properties starting with `spring.neo4j.*` are used to configure the Neo4j client:
@@ -129,7 +128,6 @@ Properties starting with `spring.ai.vectorstore.neo4j.*` are used to configure t
129
128
|`spring.ai.vectorstore.neo4j.distance-type` | The distance function to use | `cosine`
130
129
|`spring.ai.vectorstore.neo4j.label` | The label used for document nodes | `Document`
131
130
|`spring.ai.vectorstore.neo4j.embedding-property` | The property name used to store embeddings | `embedding`
132
-
|`spring.ai.vectorstore.neo4j.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/opensearch.adoc
-2
Original file line number
Diff line number
Diff line change
@@ -103,7 +103,6 @@ spring:
103
103
index-name: spring-ai-document-index
104
104
initialize-schema: true
105
105
similarity-function: cosinesimil
106
-
batching-strategy: TOKEN_COUNT
107
106
aws: # Only for Amazon OpenSearch Service
108
107
host: <aws opensearch host>
109
108
service-name: <aws service name>
@@ -124,7 +123,6 @@ Properties starting with `spring.ai.vectorstore.opensearch.*` are used to config
124
123
|`spring.ai.vectorstore.opensearch.index-name`| Name of the index to store vectors | `spring-ai-document-index`
125
124
|`spring.ai.vectorstore.opensearch.initialize-schema`| Whether to initialize the required schema | `false`
126
125
|`spring.ai.vectorstore.opensearch.similarity-function`| The similarity function to use | `cosinesimil`
127
-
|`spring.ai.vectorstore.opensearch.batching-strategy`| Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
128
126
|`spring.ai.vectorstore.opensearch.aws.host`| Hostname of the OpenSearch instance | -
129
127
|`spring.ai.vectorstore.opensearch.aws.service-name`| AWS service name | -
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/pgvector.adoc
-2
Original file line number
Diff line number
Diff line change
@@ -106,7 +106,6 @@ spring:
106
106
index-type: HNSW
107
107
distance-type: COSINE_DISTANCE
108
108
dimensions: 1536
109
-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
110
109
max-document-batch-size: 10000 # Optional: Maximum number of documents per batch
111
110
----
112
111
@@ -153,7 +152,6 @@ You can use the following properties in your Spring Boot configuration to custom
153
152
|`spring.ai.vectorstore.pgvector.schema-name` | Vector store schema name | `public`
154
153
|`spring.ai.vectorstore.pgvector.table-name` | Vector store table name | `vector_store`
155
154
|`spring.ai.vectorstore.pgvector.schema-validation` | Enables schema and table name validation to ensure they are valid and existing objects. | false
156
-
|`spring.ai.vectorstore.pgvector.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE`. | TOKEN_COUNT
157
155
|`spring.ai.vectorstore.pgvector.max-document-batch-size` | Maximum number of documents to process in a single batch. | 10000
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/qdrant.adoc
-2
Original file line number
Diff line number
Diff line change
@@ -90,7 +90,6 @@ spring:
90
90
collection-name: <collection name>
91
91
use-tls: false
92
92
initialize-schema: true
93
-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
94
93
----
95
94
96
95
Properties starting with `spring.ai.vectorstore.qdrant.*` are used to configure the `QdrantVectorStore`:
@@ -105,7 +104,6 @@ Properties starting with `spring.ai.vectorstore.qdrant.*` are used to configure
105
104
|`spring.ai.vectorstore.qdrant.collection-name`| The name of the collection to use | `vector_store`
106
105
|`spring.ai.vectorstore.qdrant.use-tls`| Whether to use TLS(HTTPS) | `false`
107
106
|`spring.ai.vectorstore.qdrant.initialize-schema`| Whether to initialize the schema | `false`
108
-
|`spring.ai.vectorstore.qdrant.batching-strategy`| Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
Copy file name to clipboardExpand all lines: spring-ai-docs/src/main/antora/modules/ROOT/pages/api/vectordbs/redis.adoc
-2
Original file line number
Diff line number
Diff line change
@@ -97,7 +97,6 @@ spring:
97
97
initialize-schema: true
98
98
index-name: custom-index
99
99
prefix: custom-prefix
100
-
batching-strategy: TOKEN_COUNT # Optional: Controls how documents are batched for embedding
101
100
----
102
101
103
102
Properties starting with `spring.ai.vectorstore.redis.*` are used to configure the `RedisVectorStore`:
@@ -109,7 +108,6 @@ Properties starting with `spring.ai.vectorstore.redis.*` are used to configure t
109
108
|`spring.ai.vectorstore.redis.initialize-schema`| Whether to initialize the required schema | `false`
110
109
|`spring.ai.vectorstore.redis.index-name` | The name of the index to store the vectors | `spring-ai-index`
111
110
|`spring.ai.vectorstore.redis.prefix` | The prefix for Redis keys | `embedding:`
112
-
|`spring.ai.vectorstore.redis.batching-strategy` | Strategy for batching documents when calculating embeddings. Options are `TOKEN_COUNT` or `FIXED_SIZE` | `TOKEN_COUNT`
0 commit comments