-
Notifications
You must be signed in to change notification settings - Fork 1
/
A-appendix.Rmd
618 lines (492 loc) · 26.6 KB
/
A-appendix.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
---
knit: "bookdown::render_book"
---
\printbibliography[heading=bibintoc]
\appendix
\renewcommand\thesubsection{\thesection.\Alph{subsection}}
# Appendix
```{r setup-lineups, echo=FALSE, message=FALSE, warning=FALSE, comment = FALSE}
knitr::opts_chunk$set(warning = FALSE, message = FALSE, echo = FALSE)
options("citation_format" = "pandoc")
```
```{r data}
library(tidyverse)
library(readxl)
library(cowplot)
library(png)
library(grid)
library(lme4)
library(ggthemes)
library(RColorBrewer)
library(knitr)
library(kableExtra)
trend_colours <- c(
"NW-SE" = "#B2DF8A",
"Three Cities" = "#A6CEE3",
"All Cities" = "#1F78B4")
type_colours <- c(
"Choro." = "#fcae91",
"Hex." = "#a50f15")
detect_f_colours <- c(
"No" = "#66C2A5",
"Yes" = "#FC8D62")
detect_colours <- c(
"Detected? No" = "#66C2A5",
"Detected? Yes" = "#FC8D62")
## Downloaded data
d <- read_xlsx("data/experiment-export.xlsx", sheet=2) %>%
filter(!is.na(contributor)) %>%
mutate(contributor = factor(contributor))
## Check data set
## Need to clean multiple entries, 48, 24
## remove duplicated entries due to submit button
d <- d %>% group_by(group, contributor, image_name) %>%
slice(1) %>% ungroup() %>%
arrange(group, contributor, plot_order)
## Remove contributors who did not provide answers to most questions
keep <- d %>% count(contributor, sort = TRUE) %>% filter(n > 10)
d <- d %>%
filter(contributor %in% keep$contributor) %>%
filter(contributor != "1234567890")
## Remove contributors who did not provide any choices
bad_contribs <- d %>% group_by(contributor) %>%
summarise(sum0 = sum(choice)) %>%
filter(sum0 < 13) %>%
pull(contributor)
d <- d %>%
filter(!(contributor %in% bad_contribs))
n_contributors <- d %>% count(contributor, sort=TRUE) %>%
summarise(n_contributors = length(contributor))
d <- d %>% mutate(certainty = factor(as.character(certainty),
levels = c("1", "2", "3", "4","5"), ordered=TRUE))
```
```{r reps}
replicate <- tibble(image_name = c("aus_cities_12_geo.png", "aus_cities_12_hex.png",
"aus_cities_3_geo.png", "aus_cities_3_hex.png",
"aus_cities_4_geo.png", "aus_cities_4_hex.png",
"aus_cities_9_geo.png", "aus_cities_9_hex.png",
"aus_nwse_2_geo.png", "aus_nwse_2_hex.png",
"aus_nwse_3_geo.png", "aus_nwse_3_hex.png",
"aus_nwse_5_geo.png", "aus_nwse_5_hex.png",
"aus_nwse_6_geo.png", "aus_nwse_6_hex.png",
"aus_three_12_geo.png", "aus_three_12_hex.png",
"aus_three_5_geo.png", "aus_three_5_hex.png",
"aus_three_8_geo.png", "aus_three_8_hex.png",
"aus_three_9_geo.png", "aus_three_9_hex.png"),
replicate = c(1, 1, 2, 2, 3, 3, 4, 4,
1, 1, 2, 2, 3, 3, 4, 4,
1, 1, 2, 2, 3, 3, 4, 4))
## Add rep info to data
d <- d %>% left_join(., replicate, by = "image_name")
```
```{r pdetectiongroup}
## Tidy for analysis
d <- d %>%
separate(image_name, c("nothing", "trend", "location", "type", "extra"), remove = FALSE) %>%
select(-nothing, -extra) %>%
mutate(location = as.numeric(location),
## detect measures the accuracy of the choice
detect = ifelse(location == choice, 1, 0)) %>%
mutate(trend = case_when(
trend == "nwse" ~ "NW-SE",
trend == "cities" ~ "All Cities",
trend == "three" ~ "Three Cities")) %>%
mutate(trend = fct_relevel(trend, "NW-SE","Three Cities","All Cities")) %>%
mutate(type = case_when(
type == "hex" ~"Hex.",
TRUE~"Choro.")) %>%
mutate(detect_f = factor(detect, levels = c(0,1), labels = c("Detected? No", "Detected? Yes")))
plots <- d %>% group_by(group, trend, type, location) %>%
## pdetect measures the aggregated accuracy of the choices
summarise(pdetect = length(detect[detect == 1])/length(detect))
```
## Overall Performance
The detection rate is considered for each lineup. The detection rates for group A were less varied than the detection rates for the lineups seen by group B. Figure \ref{fig:pdetection-group} shows the distribution using a boxplot. This shows the median value for detection rate was extremely similar.
```{r pdetection-group, fig.cap = "Boxplots of the distribution of detection rates for each line up, separated by group."}
plots %>% ggplot(aes(x = group, y = pdetect)) +
geom_boxplot() +
geom_jitter(width = 0.1) +
ylab("Detection rate") +
ylim(c(0,1))
```
The overall detection rate is considered for each trend model in Figure \ref{fig:pdetect-trend}.
The detection rates for the NW-SE trend model was less varied than the detection rates for the Three Cities and All Cities trends. Figure \ref{fig:pdetection-group} shows the distribution using a boxplot. This shows the distributions of the rates do not overlap for NW-SE and Three Cities trends, the Three cities range was larger, but the median was much higher for the NW-SE trend. The All Cities trend model distribution overlaps with the NW-SE and All Cities trends.
```{r pdetect-trend, fig.cap = "Boxplots of the distribution of detection rates for each line up, separated by trend model."}
plots %>% ggplot(aes(x = trend, y = pdetect, fill = trend)) +
geom_boxplot() +
scale_fill_manual(values = trend_colours) +
geom_jitter(width = 0.1) +
guides(fill = FALSE) +
ylab("Detection rate") +
ylim(c(0,1))
```
The boxplots in Figure \ref{fig:pdetection-type} contrast the distribution of the detection rates for eah type of display.
The detection rates across the lineups was less varied for the hexagon display. There was a large difference in the medians for the types of displays.
Without considering the relationship for each lineup, the hexagon lineup display allowed the participants to achieve higher detection rates.
```{r pdetection-type, fig.cap = "Boxplots of the distribution of detection rates for each line up, separated by type of display."}
plots %>% ggplot(aes(x = type, y = pdetect, fill = type)) +
geom_boxplot() +
geom_jitter(width = 0.1) +
scale_fill_manual(values = type_colours) +
guides(fill = FALSE) +
ylab("Detection rate") +
ylim(c(0,1))
```
## Lineups
The choropleth map lineups were created using the Australian Statistical Areas at Level 3. Each lineup had twelve map displays, this gave participants the choice of any plot, and the choice to not provide a response. this non-reponse is indicated by 0.
The choices made by participants are displayed in Figure \ref{fig:choices}. The height of each orange lollipop indiates the proportion of participants that selected the map display of real data, they represent the correct choices.
The green lollipops show the proportion of participants that selected the incorrect displays in each lineup.
The proportion of choices are also presented separately for each trend model in Table. \ref{tab:choice-nwse}, Table. \ref{tab:choice-three}, and Table. \ref{tab:choice-all}.
The correct map display in lineups with a North West to South East trend was chosen correctly with much greater frequency.
In the lineups of All Cities displays, participants were misled by the choropleth display, but not the hexagon display for all except (2).
All of Three Cities displays, except (4), were detected in the hexagon display. All except one lineup had at least one participant select the correct map in the lineup as shown in Figure \ref{fig:choices}.
```{r choices, fig.cap = "Pin plots of the propotion of choices made for each lineup location. Each facet is associated with one lineup, the height of the points show the proportion of the participants that made each choice when considering each lineup. The points coloured orange show the map which contained a trend model, these are the correct choices. The numbers differentiate the replicates of each trend model and type of map display. Participants were able to select 0 to indicate they did not want to choose a map.", fig.height = 8, fig.width = 6, results = "asis"}
d %>%
count(type, trend, choice, replicate, choice, detect_f) %>%
group_by(type, trend, replicate) %>%
mutate(prop = n/sum(n)) %>%
mutate(repl = paste("Rep:", replicate, ":\n", type, sep = "")) %>%
mutate(bottom = 0) %>%
ggplot() +
geom_point(aes(x = choice, y = prop, color = detect_f), size = 3) +
geom_segment(aes(x = choice, xend = choice,y = bottom, yend = prop, colour = detect_f), size = 1) +
facet_grid(repl ~ trend,
drop = TRUE, as.table = TRUE, scales = "free_y") +
labs(x = "Choice of plot in lineup", y = "Amount of choices") +
scale_colour_manual(values = detect_colours) +
scale_x_continuous(breaks = seq(from = 0, to = 12)) +
scale_y_continuous(breaks = seq(from = 0.0, to = 1.0, by = 0.1)) +
theme(legend.position = "bottom") +
guides(colour = FALSE, fill = FALSE) +
theme(strip.text.y = element_text(angle = 0))
```
```{r}
choice_tabs <- d %>%
count(trend, type, choice, replicate, choice, detect) %>%
group_by(trend, type, replicate) %>%
mutate(prop = as.character(round(n/sum(n), 2))) %>%
rowwise() %>%
mutate(prop = ifelse(nchar(prop)==3, paste0(prop,0), prop)) %>%
mutate(repl = paste("Rep:", replicate, ":\n", type, sep = "")) %>%
mutate(bottom = 0) %>%
select(Trend = trend, Rep = replicate, Type = type, prop, choice) %>%
spread(choice, prop, fill = "0.00") %>%
nest(data = c(Rep, Type, `0`, `1`, `2`, `3`, `4`, `5`, `6`, `7`, `8`, `9`,
`10`, `11`, `12`))
```
```{r choice-nwse, echo = FALSE, results = "asis"}
knitr::kable(choice_tabs$data[[1]], format = "latex",
align = "rrrrrrrrrrrrrr", escape = FALSE, booktabs = TRUE,
caption = "The proportion of participants who selected each of the twelve map choices in each lineup for NW-SE displays.") %>%
collapse_rows(., columns = c(1,2))
```
```{r choice-three, echo = FALSE, results = "asis"}
knitr::kable(choice_tabs$data[[2]], format = "latex",
align = "rrrrrrrrrrrrrr", escape = FALSE, booktabs = TRUE,
caption = "The proportion of participants who selected each of the twelve map choices in each lineup for Three Cities displays.") %>%
collapse_rows(., columns = c(1,2))
```
```{r choice-all, echo = FALSE, results = "asis"}
knitr::kable(choice_tabs$data[[3]], format = "latex",
align = "rrrrrrrrrrrrrr", escape = FALSE, booktabs = TRUE,
caption = "The proportion of participants who selected each of the twelve map choices in each lineup for All Cities displays.") %>%
collapse_rows(., columns = c(1,2))
```
\newpage
### All Cities
#### Replicate 1
<!-- ```{r cities-geo12, results = "asis", fig.cap = "A choropleth map lineup, location 12 contains a distribution that affects all capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_cities_12_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/cities-geo12-1.pdf}
\caption{\label{fig:cities-geo12}A choropleth map lineup, location 12 contains a distribution that affects all capital cities.}
\end{figure}
<!-- ```{r cities-hex12, results = "asis", fig.cap = "A hexagon tile map lineup, location 12 contains a distribution that affects all capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_cities_12_hex.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/cities-hex12.pdf}
\caption{\label{fig:cities-hex12}A hexagon tile map lineup, location 12 contains a distribution that affects all capital cities.}
\end{figure}
#### Replicate 2
<!-- ```{r cities-geo3, results = "asis", fig.cap = "A choropleth map lineup, location 3 contains a distribution that affects all capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_cities_3_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/cities-geo3-1.pdf}
\caption{\label{fig:cities-geo3}A choropleth map lineup, location 3 contains a distribution that affects all capital cities.}
\end{figure}
<!-- ```{r cities-hex3, results = "asis", fig.cap = "A hexagon tile map lineup, location 3 contains a distribution that affects all capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_cities_3_hex.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/cities-hex3-1.pdf}
\caption{\label{fig:cities-hex3}A hexagon tile map lineup, location 3 contains a distribution that affects all capital cities.}
\end{figure}
#### Replicate 3
<!-- ```{r cities-geo4, results = "asis", fig.cap = "A choropleth map lineup, location 4 contains a distribution that affects all capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_cities_4_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/cities-geo4-1.pdf}
\caption{\label{fig:cities-geo4}A choropleth map lineup, location 4 contains a distribution that affects all capital cities.}
\end{figure}
<!-- ```{r cities-hex4, results = "asis", fig.cap = "A hexagon tile map lineup, location 4 contains a distribution that affects all capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_cities_4_hex.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/cities-hex4-1.pdf}
\caption{\label{fig:cities-hex4}A hexagon tile map lineup, location 4 contains a distribution that affects all capital cities.}
\end{figure}
#### Replicate 4
<!-- ```{r cities-geo9, results = "asis", fig.cap = "A choropleth map lineup, location 9 contains a distribution that affects all capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_cities_9_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/cities-geo9-1.pdf}
\caption{\label{fig:cities-geo9}A choropleth map lineup, location 9 contains a distribution that affects all capital cities.}
\end{figure}
<!-- ```{r cities-hex9, results = "asis", fig.cap = "A hexagon tile map lineup, location 9 contains a distribution that affects all capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_cities_9_hex.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/cities-hex9-1.pdf}
\caption{\label{fig:cities-hex9}A hexagon tile map lineup, location 9 contains a distribution that affects all capital cities.}
\end{figure}
\newpage
### Three Cities
#### Replicate 1
<!-- ```{r three-geo12, results = "asis", fig.cap = "A choropleth map lineup, location 12 contains a distribution that affects three of the Australian capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_three_12_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/three-geo12-1.pdf}
\caption{\label{fig:three-geo12}A choropleth map lineup, location 12 contains a distribution that affects three of the Australian capital cities.}
\end{figure}
<!-- ```{r three-hex12, results = "asis", fig.cap = "A hexagon tile map lineup, location 12 contains a distribution that affects three of the Australian capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_three_12_hex.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/three-hex12-1.pdf}
\caption{\label{fig:three-hex12}A hexagon tile map lineup, location 12 contains a distribution that affects three of the Australian capital cities.}
\end{figure}
#### Replicate 2
<!-- ```{r three-geo5, results = "asis", fig.cap = "A choropleth map lineup, location 3 contains a distribution that affects three of the Australian capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_three_5_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/three-geo5-1.pdf}
\caption{\label{fig:three-geo5}A choropleth map lineup, location 3 contains a distribution that affects three of the Australian capital cities.}
\end{figure}
<!-- ```{r three-hex5, results = "asis", fig.cap = "A hexagon tile map lineup, location 3 contains a distribution that affects three of the Australian capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_three_5_hex.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/three-hex5-1.pdf}
\caption{\label{fig:three-hex5}A hexagon tile map lineup, location 3 contains a distribution that affects three of the Australian capital cities.}
\end{figure}
#### Replicate 3
<!-- ```{r three-geo8, results = "asis", fig.cap = "A choropleth map lineup, location 4 contains a distribution that affects three of the Australian capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_three_8_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/three-geo8-1.pdf}
\caption{\label{fig:three-geo8}A choropleth map lineup, location 4 contains a distribution that affects three of the Australian capital cities.}
\end{figure}
<!-- ```{r three-hex8, results = "asis", fig.cap = "A hexagon tile map lineup, location 4 contains a distribution that affects three of the Australian capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_three_8_hex.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/three-hex8-1.pdf}
\caption{\label{fig:three-hex8}A hexagon tile map lineup, location 4 contains a distribution that affects three of the Australian capital cities.}
\end{figure}
#### Replicate 4
<!-- ```{r three-geo9, results = "asis", fig.cap = "A choropleth map lineup, location 9 contains a distribution that affects three of the Australian capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_three_9_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/three-geo9-1.pdf}
\caption{\label{fig:three-geo9}A choropleth map lineup, location 9 contains a distribution that affects three of the Australian capital cities.}
\end{figure}
<!-- ```{r three-hex9, results = "asis", fig.cap = "A hexagon tile map lineup, location 9 contains a distribution that affects three of the Australian capital cities."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_three_9_hex.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/three-hex9-1.pdf}
\caption{\label{fig:three-hex9}A hexagon tile map lineup, location 9 contains a distribution that affects three of the Australian capital cities.}
\end{figure}
### North West to South East
#### Replicate 1
<!-- ```{r nwse-geo2, results = "asis", fig.cap = "A choropleth map lineup, location 12 contains a distribution that affects all areas from North West to the South East."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_nwse_2_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/nwse-geo2-1.pdf}
\caption{\label{fig:nwse-geo2}A choropleth map lineup, location 12 contains a distribution that affects all areas from North West to the South East.}
\end{figure}
<!-- ```{r nwse-hex2, results = "asis", fig.cap = "A hexagon tile map lineup, location 12 contains a distribution that affects all areas from North West to the South East."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_nwse_2_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/nwse-hex2-1.pdf}
\caption{\label{fig:nwse-hex2}A hexagon tile map lineup, location 12 contains a distribution that affects all areas from North West to the South East.}
\end{figure}
#### Replicate 2
<!-- ```{r nwse-geo3, results = "asis", fig.cap = "A choropleth map lineup, location 3 contains a distribution that affects all areas from North West to the South East."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_nwse_3_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/nwse-geo3-1.pdf}
\caption{\label{fig:nwse-geo3}A choropleth map lineup, location 3 contains a distribution that affects all areas from North West to the South East.}
\end{figure}
<!-- ```{r nwse-hex3, results = "asis", fig.cap = "A hexagon tile map lineup, location 3 contains a distribution that affects all areas from North West to the South East."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_nwse_3_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/nwse-hex3-1.pdf}
\caption{\label{fig:nwse-hex3}A hexagon tile map lineup, location 3 contains a distribution that affects all areas from North West to the South East.}
\end{figure}
#### Replicate 3
<!-- ```{r nwse-geo5, results = "asis", fig.cap = "A choropleth map lineup, location 4 contains a distribution that affects all areas from North West to the South East."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_nwse_5_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/nwse-geo5-1.pdf}
\caption{\label{fig:nwse-geo5}A choropleth map lineup, location 4 contains a distribution that affects all areas from North West to the South East.}
\end{figure}
<!-- ```{r nwse-hex5, results = "asis", fig.cap = "A hexagon tile map lineup, location 4 contains a distribution that affects all areas from North West to the South East."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_nwse_5_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/nwse-hex5-1.pdf}
\caption{\label{fig:nwse-hex5}A hexagon tile map lineup, location 4 contains a distribution that affects all areas from North West to the South East.}
\end{figure}
#### Replicate 4
<!-- ```{r nwse-geo6, results = "asis", fig.cap = "A choropleth map lineup, location 9 contains a distribution that affects all areas from North West to the South East."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_nwse_6_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/nwse-geo6-1.pdf}
\caption{\label{fig:nwse-geo6}A choropleth map lineup, location 9 contains a distribution that affects all areas from North West to the South East.}
\end{figure}
<!-- ```{r nwse-hex6, results = "asis", fig.cap = "A hexagon tile map lineup, location 9 contains a distribution that affects all areas from North West to the South East."} -->
<!-- ggdraw() + -->
<!-- draw_plot(rasterGrob(readPNG("lineups/aus_nwse_6_geo.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=8cm]{lineups/nwse-hex6-1.pdf}
\caption{\label{fig:nwse-hex6}A hexagon tile map lineup, location 9 contains a distribution that affects all areas from North West to the South East.}
\end{figure}
---
knit: "bookdown::render_book"
---
```{r setup-procedures, echo=FALSE, message=FALSE, warning=FALSE, comment = FALSE}
knitr::opts_chunk$set(warning = FALSE, message = FALSE, echo = FALSE)
options("citation_format" = "pandoc")
```
## Experiment survey procedure
Participants were recruited via advertising on the Figure Eight crowdsource platform.
Choosing the task from the list directed all potential participants to the page of instructions.
This page contained written instructions and is shown in Figure \ref{fig:instruct}.
<!-- ```{r instruct, results = "asis", fig.cap = "The training lineups of choropleth maps."} -->
<!-- ggdraw() + -->
<!-- draw_plot(grid::rasterGrob(readPNG("figures/fig8_instruct.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[height=16cm]{figures/fig8_instruct.png}
\caption{\label{fig:instruct}The training lineups of choropleth maps.}
\end{figure}
### Training
The participants were trained using three displays. There were relatively simple lineups, they are displayed in Figure \ref{fig:training1} and Figure \ref{fig:training2}.
<!-- ```{r training1, results = "asis", fig.cap = "The training lineups of choropleth maps."} -->
<!-- ggdraw() + -->
<!-- draw_plot(grid::rasterGrob(readPNG("figures/fig8_training1.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[width=16cm]{figures/fig8_training1.png}
\caption{\label{fig:training1}The training lineups of choropleth maps.}
\end{figure}
<!-- ```{r training2, results = "asis", fig.cap = "The training lineups of hexagon tile maps."} -->
<!-- ggdraw() + -->
<!-- draw_plot(grid::rasterGrob(readPNG("figures/fig8_training2.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[width=16cm]{figures/fig8_training2.png}
\caption{\label{fig:training2}The training lineups of hexagon tile maps.}
\end{figure}
### Survey application
The survey application was a `shinydashboard` we application, hosted on a website external to the Figure-Eight platform. The link to the survey was located at the bottom of the instructions and training page. Only participants who had read all of the instructions and seen the example image sets continued to the survey via the link.
This page also contained a question that asked participants for a validation code. The participants unique validation code was generated upon them opening the web application. This code was released to participants when they had considered all twelve lineups and submitted their responses to the `googlesheets` data set. Their validation codes were contained in the data set and associated with each of their responses.
The demographic and consent page of the `shinydashboard` web application are displayed in Figure \ref{fig:survey-demogs}. Two example lineups are shown, one choropleth map lineup in Figure \ref{fig:survey-choro} and one hexagon tile map lineup in Figure \ref{fig:survey-hex}.
<!-- ```{r survey-demogs, results = "asis", fig.cap = "The demographics questions tab of the shinydashboard survey application."} -->
<!-- ggdraw() + -->
<!-- draw_plot(grid::rasterGrob(readPNG("figures/survey_demogs.png"))) -->
<!-- ``` -->
\begin{figure}[H]
\centering
\includegraphics[width=16cm]{lineups/survey-demogs-1.pdf}
\caption{\label{fig:survey-demogs}The demographics questions tab of the shinydashboard survey application.}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=16cm]{lineups/survey-choro-1.pdf}
\caption{\label{fig:survey-choro}An example of the choropleth map lineup shown in the survey tab of the shinydashboard app.}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=16cm]{lineups/survey-hex-1.pdf}
\caption{\label{fig:survey-hex}An example of the hexagon tile map lineup shown in the survey tab of the shinydashboard app.}
\end{figure}
## Ethics Approval
\includepdf[pages = {1-}, scale=1]{Ethics_1.pdf}