forked from cleardusk/3DDFA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_aflw.py
104 lines (80 loc) · 3.26 KB
/
benchmark_aflw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
#!/usr/bin/env python3
# coding: utf-8
import os.path as osp
import numpy as np
from math import sqrt
from utils.io import _load
d = 'test.configs'
yaw_list = _load(osp.join(d, 'AFLW_GT_crop_yaws.npy'))
roi_boxs = _load(osp.join(d, 'AFLW_GT_crop_roi_box.npy'))
pts68_all = _load(osp.join(d, 'AFLW_GT_pts68.npy'))
pts21_all = _load(osp.join(d, 'AFLW_GT_pts21.npy'))
def ana(nme_list):
yaw_list_abs = np.abs(yaw_list)
ind_yaw_1 = yaw_list_abs <= 30
ind_yaw_2 = np.bitwise_and(yaw_list_abs > 30, yaw_list_abs <= 60)
ind_yaw_3 = yaw_list_abs > 60
nme_1 = nme_list[ind_yaw_1]
nme_2 = nme_list[ind_yaw_2]
nme_3 = nme_list[ind_yaw_3]
mean_nme_1 = np.mean(nme_1) * 100
mean_nme_2 = np.mean(nme_2) * 100
mean_nme_3 = np.mean(nme_3) * 100
# mean_nme_all = np.mean(nme_list) * 100
std_nme_1 = np.std(nme_1) * 100
std_nme_2 = np.std(nme_2) * 100
std_nme_3 = np.std(nme_3) * 100
# std_nme_all = np.std(nme_list) * 100
mean_all = [mean_nme_1, mean_nme_2, mean_nme_3]
mean = np.mean(mean_all)
std = np.std(mean_all)
s1 = '[ 0, 30]\tMean: \x1b[32m{:.3f}\x1b[0m, Std: {:.3f}'.format(mean_nme_1, std_nme_1)
s2 = '[30, 60]\tMean: \x1b[32m{:.3f}\x1b[0m, Std: {:.3f}'.format(mean_nme_2, std_nme_2)
s3 = '[60, 90]\tMean: \x1b[32m{:.3f}\x1b[0m, Std: {:.3f}'.format(mean_nme_3, std_nme_3)
# s4 = '[ 0, 90]\tMean: \x1b[31m{:.3f}\x1b[0m, Std: {:.3f}'.format(mean_nme_all, std_nme_all)
s5 = '[ 0, 90]\tMean: \x1b[31m{:.3f}\x1b[0m, Std: \x1b[31m{:.3f}\x1b[0m'.format(mean, std)
s = '\n'.join([s1, s2, s3, s5])
print(s)
return mean_nme_1, mean_nme_2, mean_nme_3, mean, std
def calc_nme(pts68_fit_all):
std_size = 120
ind_68to21 = [[18], [20], [22], [23], [25], [27], [37], [37, 38, 39, 40, 41, 42], [40], [43],
[43, 44, 45, 46, 47, 48],
[46], [3], [32], [31], [36], [15], [49], [61, 62, 63, 64, 65, 66, 67, 68], [55], [9]]
for i in range(len(ind_68to21)):
for j in range(len(ind_68to21[i])):
ind_68to21[i][j] -= 1
nme_list = []
for i in range(len(roi_boxs)):
pts68_fit = pts68_fit_all[i]
pts68_gt = pts68_all[i]
pts21_gt = pts21_all[i]
# reconstruct 68 pts
sx, sy, ex, ey = roi_boxs[i]
scale_x = (ex - sx) / std_size
scale_y = (ey - sy) / std_size
pts68_fit[0, :] = pts68_fit[0, :] * scale_x + sx
pts68_fit[1, :] = pts68_fit[1, :] * scale_y + sy
# pts68 -> pts21
pts21_est = np.zeros_like(pts21_gt, dtype=np.float32)
for i in range(21):
ind = ind_68to21[i]
tmp = np.mean(pts68_fit[:, ind], 1)
pts21_est[:, i] = tmp
# build bbox
minx, maxx = np.min(pts68_gt[0, :]), np.max(pts68_gt[0, :])
miny, maxy = np.min(pts68_gt[1, :]), np.max(pts68_gt[1, :])
llength = sqrt((maxx - minx) * (maxy - miny))
# nme
pt_valid = (pts21_gt[0, :] != -1) & (pts21_gt[1, :] != -1)
dis = pts21_est[:, pt_valid] - pts21_gt[:, pt_valid]
dis = np.sqrt(np.sum(np.power(dis, 2), 0))
dis = np.mean(dis)
nme = dis / llength
nme_list.append(nme)
nme_list = np.array(nme_list, dtype=np.float32)
return nme_list
def main():
pass
if __name__ == '__main__':
main()