forked from cleardusk/3DDFA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwpdc_loss.py
130 lines (101 loc) · 4.43 KB
/
wpdc_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python3
# coding: utf-8
import torch
import torch.nn as nn
from math import sqrt
from utils.io import _numpy_to_cuda
from utils.params import *
_to_tensor = _numpy_to_cuda # gpu
def _parse_param_batch(param):
"""Work for both numpy and tensor"""
N = param.shape[0]
p_ = param[:, :12].view(N, 3, -1)
p = p_[:, :, :3]
offset = p_[:, :, -1].view(N, 3, 1)
alpha_shp = param[:, 12:52].view(N, -1, 1)
alpha_exp = param[:, 52:].view(N, -1, 1)
return p, offset, alpha_shp, alpha_exp
class WPDCLoss(nn.Module):
"""Input and target are all 62-d param"""
def __init__(self, opt_style='resample', resample_num=132):
super(WPDCLoss, self).__init__()
self.opt_style = opt_style
self.param_mean = _to_tensor(param_mean)
self.param_std = _to_tensor(param_std)
self.u = _to_tensor(u)
self.w_shp = _to_tensor(w_shp)
self.w_exp = _to_tensor(w_exp)
self.w_norm = _to_tensor(w_norm)
self.w_shp_length = self.w_shp.shape[0] // 3
self.keypoints = _to_tensor(keypoints)
self.resample_num = resample_num
def reconstruct_and_parse(self, input, target):
# reconstruct
param = input * self.param_std + self.param_mean
param_gt = target * self.param_std + self.param_mean
# parse param
p, offset, alpha_shp, alpha_exp = _parse_param_batch(param)
pg, offsetg, alpha_shpg, alpha_expg = _parse_param_batch(param_gt)
return (p, offset, alpha_shp, alpha_exp), (pg, offsetg, alpha_shpg, alpha_expg)
def _calc_weights_resample(self, input_, target_):
# resample index
if self.resample_num <= 0:
keypoints_mix = self.keypoints
else:
index = torch.randperm(self.w_shp_length)[:self.resample_num].reshape(-1, 1)
keypoints_resample = torch.cat((3 * index, 3 * index + 1, 3 * index + 2), dim=1).view(-1).cuda()
keypoints_mix = torch.cat((self.keypoints, keypoints_resample))
w_shp_base = self.w_shp[keypoints_mix]
u_base = self.u[keypoints_mix]
w_exp_base = self.w_exp[keypoints_mix]
input = torch.tensor(input_.data.clone(), requires_grad=False)
target = torch.tensor(target_.data.clone(), requires_grad=False)
(p, offset, alpha_shp, alpha_exp), (pg, offsetg, alpha_shpg, alpha_expg) \
= self.reconstruct_and_parse(input, target)
input = self.param_std * input + self.param_mean
target = self.param_std * target + self.param_mean
N = input.shape[0]
offset[:, -1] = offsetg[:, -1]
weights = torch.zeros_like(input, dtype=torch.float)
tmpv = (u_base + w_shp_base @ alpha_shp + w_exp_base @ alpha_exp).view(N, -1, 3).permute(0, 2, 1)
tmpv_norm = torch.norm(tmpv, dim=2)
offset_norm = sqrt(w_shp_base.shape[0] // 3)
# for pose
param_diff_pose = torch.abs(input[:, :11] - target[:, :11])
for ind in range(11):
if ind in [0, 4, 8]:
weights[:, ind] = param_diff_pose[:, ind] * tmpv_norm[:, 0]
elif ind in [1, 5, 9]:
weights[:, ind] = param_diff_pose[:, ind] * tmpv_norm[:, 1]
elif ind in [2, 6, 10]:
weights[:, ind] = param_diff_pose[:, ind] * tmpv_norm[:, 2]
else:
weights[:, ind] = param_diff_pose[:, ind] * offset_norm
## This is the optimizest version
# for shape_exp
magic_number = 0.00057339936 # scale
param_diff_shape_exp = torch.abs(input[:, 12:] - target[:, 12:])
# weights[:, 12:] = magic_number * param_diff_shape_exp * self.w_norm
w = torch.cat((w_shp_base, w_exp_base), dim=1)
w_norm = torch.norm(w, dim=0)
# print('here')
weights[:, 12:] = magic_number * param_diff_shape_exp * w_norm
eps = 1e-6
weights[:, :11] += eps
weights[:, 12:] += eps
# normalize the weights
maxes, _ = weights.max(dim=1)
maxes = maxes.view(-1, 1)
weights /= maxes
# zero the z
weights[:, 11] = 0
return weights
def forward(self, input, target, weights_scale=10):
if self.opt_style == 'resample':
weights = self._calc_weights_resample(input, target)
loss = weights * (input - target) ** 2
return loss.mean()
else:
raise Exception(f'Unknown opt style: {self.opt_style}')
if __name__ == '__main__':
pass