Skip to content

Latest commit

 

History

History
94 lines (67 loc) · 3.19 KB

README.md

File metadata and controls

94 lines (67 loc) · 3.19 KB

DataWig - Imputation for Tables

PyPI version GitHub license GitHub issues

DataWig learns models to impute missing values in tables.

For each to-be-imputed column, DataWig trains a supervised machine learning model to predict the observed values in that column using the data from other columns.

Dependencies

DataWig requires:

  • Python3
  • MXNet 1.3.0
  • numpy
  • pandas
  • scikit-learn

Installation with pip

CPU

> pip install datawig

GPU

If you want to run DataWig on a GPU you need to make sure your version of Apache MXNet Incubating contains the GPU bindings. Depending on your version of CUDA, you can do this by running the following:

> wget https://raw.githubusercontent.com/awslabs/datawig/master/requirements/requirements.gpu-cu${CUDA_VERSION}.txt
> pip install datawig --no-deps -r requirements.gpu-cu${CUDA_VERSION}.txt
> rm requirements.gpu-cu${CUDA_VERSION}.txt

where ${CUDA_VERSION} can be 75 (7.5), 80 (8.0), 90 (9.0), or 91 (9.1).

Running DataWig

The DataWig API expects your data as a pandas DataFrame.

For most use cases, the SimpleImputer class is the best starting point. DataWig expects you to provide the column name of the column you would like to impute values for (called output_column below) and some column names that contain values that you deem useful for imputation (called input_columns below).

   from datawig import SimpleImputer
   import pandas as pd

   df_train = pd.read_csv('/path/to/train/data.csv')
   df_test = pd.read_csv('/path/to/test/data.csv')

   #Initialize a SimpleImputer model
   imputer = SimpleImputer(
       input_columns=['item_name', 'description'], #columns containing information about the column we want to impute
       output_column='brand' #the column we'd like to impute values for
       output_path = 'imputer_model' #stores model data and metrics
       )
   
   #Fit an imputer model on the train data 
   imputer.fit(train_df=df_train)
   
   #Impute missing values and return original dataframe with predictions
   imputed = imputer.predict(df_test)

In order to have more control over the types of models and preprocessings, the Imputer class allows directly specifying all relevant model features and parameters. For usage examples, refer to the unit test cases.

Executing Tests

Clone the repository from git and set up virtualenv in the root dir of the package:

python3 -m venv venv

Install the package from local sources:

./venv/bin/pip install -e .

Run tests:

./venv/bin/pip install -r requirements/requirements.dev.txt
./venv/bin/python -m pytest

Acknowledgments

Thanks to David Greenberg for the package name.