-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0104.cpp
214 lines (189 loc) · 6.67 KB
/
euler-0104.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// ////////////////////////////////////////////////////////
// # Title
// Pandigital Fibonacci ends
//
// # URL
// https://projecteuler.net/problem=104
// http://euler.stephan-brumme.com/104/
//
// # Problem
// The Fibonacci sequence is defined by the recurrence relation:
//
// `F_n = F_{n-1} + F_{n-2}`, where `F_1 = 1` and `F_2 = 1`.
//
// It turns out that `F_541`, which contains 113 digits, is the first Fibonacci number for which the last nine digits are 1-9 pandigital (contain all the digits 1 to 9, but not necessarily in order).
// And `F_2749`, which contains 575 digits, is the first Fibonacci number for which the first nine digits are 1-9 pandigital.
//
// Given that `F_k` is the first Fibonacci number for which the first nine digits AND the last nine digits are 1-9 pandigital, find `k`.
//
// # Solved by
// Stephan Brumme
// May 2017
//
// # Algorithm
// My solution is based on a stripped down version of my ''BigNum'' class and stores 9 digits per cell, that's why it's called ''BillionNum'' (because ''MaxDigit = 1000000000'' ==> `10^9`).
// It only supports ''operator+=''.
//
// ''isPandigital(x, digits)'' returns true if ''x'' is ''1..digits''-pandigital, e.g. ''isPandigital(312, 3) == true'' because 312 is 3-pandigital.
// The original problem assumes ''digits = 9''.
// ''x'' 's digits are chopped off step-by-step and a bitmask tracks which digits we have already seen.
// Zero is not part of any pandigital number, not even implicit leading zeros.
//
// The ''main'' routines analyzes the lower digits first.
// Only when they are pandigital then the highest digits are checked, too, because that's bit slower:
// I take all digits from the highest cell of my ''BillionNum''. If there are too few digits, all digits in its neighboring cell are included.
// We might have too many digits now, therefore I remove the lowest digit until the number of digits is correct.
// If these digits are pandigital, then we are done.
//
// Finding the next Fibonacci number involves ''operator+='' of ''BillionNum''. The default algorithm is:
// `F_{next} = F_a + F_b`
// `F_a = F_b`
// `F_b = F_{next}`
// ==> quite a few memory allocations, and many object constructor/destruction will take place behind the curtain.
// A simple trick to improve performance is to use these equations instead, which get rid of these "memory/object bookkeeping" effects:
// `F_a += F_b` (add in-place)
// `F_a <=> F_b` (swap contents of both object, which is technically just swapping two pointers)
//
// The main performance boost comes from my next trick:
// - we check the lowest digit whether they are pandigital
// - we check the highest digit whether they are pandigital
// - __but we don't care what the other digits are__
// ==> whenever a number exceeds a certain size, I delete digits from the middle
// Currently I delete if there are more than 10 cells, which represent `9 x 10 = 90` digits.
// There is no special reason why I chose 10, it was the first number that I tried and it worked immediately.
// The solution is found 100x faster now ...
//
// # Alternatives
// I saw some people used clever `log` arithmetic to find the highest digits.
// This works for the original Fibonacci numbers but not the generalized Fibonacci numbers of the Hackerrank problem.
//
// # Hackerrank
// The user can define `F_1` and `F_2` as well as how many digits should be pandigital.
#include <iostream>
#include <vector>
//#define ORIGINAL
// store single digits with lowest digits first
// e.g. 1024 is stored as { 4,2,0,1 }
struct BillionNum : public std::vector<unsigned int>
{
// must store exactly 9 digits per cell
static const unsigned int MaxDigit = 1000000000;
// fill one cell
BillionNum(unsigned int x)
{
push_back(x);
}
// add a big number
void operator+=(const BillionNum& other)
{
// this code is a 95% copy of my BigNum class
// add in-place, make sure it's big enough
if (size() < other.size())
resize(other.size(), 0);
unsigned int carry = 0;
for (size_t i = 0; i < size(); i++)
{
// perform standard addition algorithm
carry += operator[](i);
if (i < other.size())
carry += other[i];
else
if (carry == 0)
return;
if (carry < MaxDigit)
{
// no overflow
operator[](i) = carry;
carry = 0;
}
else
{
// yes, we have an overflow
operator[](i) = carry - MaxDigit;
carry = 1;
}
}
if (carry > 0)
push_back(carry);
}
};
// return true if x is pandigital (1..digits)
bool isPandigital(unsigned int x, unsigned int digits = 9)
{
unsigned int mask = 0; // zero is not allowed, only 1 to 9
for (unsigned int i = 0; i < digits; i++)
{
// get next digit
auto current = x % 10;
if (current == 0 || current > digits)
return false;
auto bit = 1 << current;
// already seen ?
if ((mask & bit) != 0)
return false;
// mark that digit as "used"
mask |= bit;
x /= 10;
}
return true;
}
int main()
{
unsigned int first = 1; // F_1 = 1
unsigned int second = 1; // F_2 = 1
unsigned int digits = 9; // 9-pandigital (1..9)
#ifndef ORIGINAL
std::cin >> first >> second >> digits;
#endif
if (first == 1 && digits == 1)
{
std::cout << "1" << std::endl;
return 0;
}
unsigned long long Modulo = 1; // 10^digits
for (unsigned i = 1; i <= digits; i++)
Modulo *= 10;
// convert to a simplified BigNum
BillionNum a = first;
BillionNum b = second;
for (unsigned int i = 2; i <= 2000000; i++)
{
// analyze the lowest digits
auto lowest = b.front() % Modulo;
bool isPanLow = isPandigital(lowest, digits);
// look at the highest digits
if (isPanLow)
{
unsigned long long highest = b.back();
// maybe too few digits: use next cells, too
if (highest < Modulo && b.size() > 1)
highest = highest * BillionNum::MaxDigit + b[b.size() - 2];
// too many digits ? shrink until we have the right number of digits
while (highest >= Modulo)
highest /= 10;
// check if pandigital
if (isPandigital(highest, digits))
{
// yes, pandigital on both ends !
std::cout << i << std::endl;
return 0;
}
}
// next Fibonacci number
a += b;
std::swap(a, b);
// don't compute all digits:
// - look at the lowest digits
// - and look at the highest (incl. some of its neighbors because of carry)
// => remove those in the middle
// => my "magic numbers" 10 and 2 were chosen pretty much at random ...
if (a.size() > 10)
{
a.erase(a.begin() + 2);
b.erase(b.begin() + 2);
}
}
// failed
std::cout << "no solution" << std::endl;
return 0;
}