-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0107.cpp
213 lines (186 loc) · 6.16 KB
/
euler-0107.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// ////////////////////////////////////////////////////////
// # Title
// Minimal network
//
// # URL
// https://projecteuler.net/problem=107
// http://euler.stephan-brumme.com/107/
//
// # Problem
// The following undirected network consists of seven vertices and twelve edges with a total weight of 243.
//
// 
//
// The same network can be represented by the matrix below.
//
// || 2 || 2 || 2 || 2 || 2 || 2 || 2 || 2 ||
// || ++ A ++ B ++ C ++ D ++ E ++ F ++ G ||
// || A ++ ++ 16++ 12++ 21++ ++ ++ ||
// || B ++ 16++ ++ ++ 17++ 20++ ++ ||
// || C ++ 12++ ++ ++ 28++ ++ 31++ ||
// || D ++ 21++ 17++ 28++ ++ 18++ 19++ 23||
// || E ++ ++ 20++ ++ 18++ ++ ++ 11||
// || F ++ ++ ++ 31++ 19++ ++ ++ 27||
// || G ++ ++ ++ ++ 23++ 11++ 27++ ||
//
// However, it is possible to optimise the network by removing some edges and still ensure that all points on the network remain connected.
// The network which achieves the maximum saving is shown below. It has a weight of 93, representing a saving of 243 - 93 = 150 from the original network.
//
// 
//
// Using [network.txt](https://projecteuler.net/project/resources/p107_network.txt) (right click and 'Save Link/Target As...'), a 6K text file containing a network with forty vertices,
// and given in matrix form, find the maximum saving which can be achieved by removing redundant edges whilst ensuring that the network remains connected.
//
// # Solved by
// Stephan Brumme
// May 2017
//
// # Algorithm
// I use Prim's algorithm (see https://en.wikipedia.org/wiki/Prim%27s_algorithm ):
// - ''done'' contains these nodes where all connections are optimized
// - ''done'' contains initially an arbitrarily chosen node
// - algorithm is finished when ''done'' contains all nodes
// - in each iteration, one node is added to ''done''
//
// One iteration performs these tasks:
// - store all edges in ''next'' where one node is in ''done'' and the other node isn't
// - sort ''next'' by the weight
// - pick the lowest
// - add that edge to the optimized graph ''minimal''
// - add the other edge's node to ''done'', too
//
// There will be 40-1=39 iterations. The most time-consuming part is locating all potential edges.
// The "true" algorithm of Prim uses a priority queue quite efficiently whereas I rebuild it from scratch every time.
// Nevertheless, my code solves the 2500x2500 networks of Hackerrank within less than a second.
//
// # Hackerrank
// - the input format is completely different
// - two nodes may be connected via multiple edges
// - print the optimized weight instead of the gain
//#define ORIGINAL
#include <iostream>
#include <set>
#include <map>
#include <queue>
typedef unsigned int Node;
typedef unsigned int Weight;
// connect two nodes and assign a weight
struct Edge
{
Node from;
Node to;
Weight weight;
// for sorting
bool operator<(const Edge& other) const
{
// STL's priority queue returns the __largest__ element first, therefore I invert the comparison sign
if (weight != other.weight)
return weight > other.weight;
// sort by nodes, too, to avoid collisions of nodes with the same weight
// the order doesn't matter, these nodes just "have to be different"
if (from != other.from)
return from < other.from;
return to < other.to;
}
};
// all edges (full network)
std::map<std::pair<Node, Node>, Weight> network;
// all nodes
std::set<Node> nodes;
// weight of the full network, including duplicate connections
unsigned int initialSum = 0;
// insert an edge into the network, true if already existing
void addEdge(Node from, Node to, Weight weight)
{
// count all originals weights
initialSum += weight;
// all edges have the lower ID first (I can do that because it's an undirected graph)
if (from > to)
std::swap(from, to);
// already existing edge ?
auto fromTo = std::make_pair(from, to);
if (network.count(fromTo) != 0)
// has the existing edge a lower or the same weight ? => we're done
if (network[fromTo] <= weight)
return;
// store new (or improved) connection between two nodes
network[fromTo] = weight;
nodes.insert(from);
nodes.insert(to);
}
int main()
{
#ifdef ORIGINAL
// read Project Euler's weird file format
for (unsigned int i = 0; i < 40; i++)
for (unsigned int j = 0; j < 40; j++)
{
char c = 0;
unsigned int weight = 0;
// CSV-format
while (c != ',' && c != '\n')
{
c = std::cin.get();
// ignore dashes
if (c >= '0' && c <= '9')
{
weight *= 10;
weight += c - '0';
}
}
// only valid weights
if (weight != 0 && i < j)
addEdge(i, j, weight);
}
#else
// read Hackerrank input
unsigned int numNodes, numEdges;
std::cin >> numNodes >> numEdges;
for (unsigned int i = 0; i < numEdges; i++)
{
Node from, to;
Weight weight;
std::cin >> from >> to >> weight;
addEdge(from, to, weight);
}
#endif
// optimized graph, initially empty
std::set<Edge> minimal;
// start with a random node
std::set<Node> done;
done.insert(*nodes.begin());
// not all nodes optimized yet ?
while (done.size() < nodes.size())
{
// add all edges where one node is part of tree and the other isn't
std::priority_queue<Edge> next;
for (auto e : network)
{
auto fromTo = e.first;
bool hasFrom = done.count(fromTo.first) != 0;
bool hasTo = done.count(fromTo.second) != 0;
if (hasFrom == hasTo) // both nodes are already optimized or both aren't ?
continue;
next.push({fromTo.first, fromTo.second, e.second});
}
// get edge with minimal weight
auto add = next.top();
// add new edge to tree
done.insert(add.from); // one insert is redundant but set::set throws it away
done.insert(add.to);
// add edge to the optimized graph
minimal.insert(add);
}
// "measure" both graphs
unsigned int optimizedSum = 0;
for (auto i : minimal)
optimizedSum += i.weight;
#ifdef ORIGINAL
// difference
auto gain = initialSum - optimizedSum;
std::cout << gain << std::endl;
#else
std::cout << optimizedSum << std::endl;
#endif
return 0;
}