-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0127.cpp
116 lines (104 loc) · 3.34 KB
/
euler-0127.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
// ////////////////////////////////////////////////////////
// # Title
// abc-hits
//
// # URL
// https://projecteuler.net/problem=127
// http://euler.stephan-brumme.com/127/
//
// # Problem
// The radical of `n`, `rad(n)`, is the product of distinct prime factors of `n`.
// For example, `504 = 23 * 32 * 7`, so `rad(504) = 2 * 3 * 7 = 42`.
//
// We shall define the triplet of positive integers `(a, b, c)` to be an abc-hit if:
//
// 1. `GCD(a, b) = GCD(a, c) = GCD(b, c) = 1`
// 2. `a < b`
// 3. `a + b = c`
// 4. `rad(abc) < c`
//
// For example, `(5, 27, 32)` is an abc-hit, because:
//
// 1. `GCD(5, 27) = GCD(5, 32) = GCD(27, 32) = 1`
// 2. `5 < 27`
// 3. `5 + 27 = 32`
// 4. `rad(4320) = 30 < 32`
//
// It turns out that abc-hits are quite rare and there are only thirty-one abc-hits for `c < 1000`, with `sum{c} = 12523`.
//
// Find `sum{c}` for `c < 120000`.
//
// # Solved by
// Stephan Brumme
// June 2017
//
// # Algorithm
// My first step is to produce all ''rad[]'' in a sieve-like manner.
// Then two nested loops process each pair `(a,b)` where `a < b` and `a + b < 120000`.
//
// Check whether ''rad[a*b*c] < c'':
// The problem statement clearly states that `gcd(a,b)=gcd(b,c)=gcd(a,c)=1`. If a, b and c have no shared divisors, then their rad have no shared divisors, too.
// It follows that ''rad[a*b*c] = rad[a] * rad[b] * rad[c]''.
//
// If `gcd(a,b)=1` then `gcd(a,c)=gcd(a,b+a)=1` and `gcd(b,c)=gcd(c,b)=gcd(a+b,b)=1`. It's sufficient to test only ''gcd(a,b) == 1''.
//
// A minor speedup comes from the observation that `a` and `b` can't be even at the same time because then they would both contain prime factor 2:
// if `a` is even then ''incrementB'' ensures that `b` is always odd.
//
// A second trick is that `gcd(a, b) != 1` only if `a` and `b` share at least one prime factor. However, all prime factors can be found in `rad(a)` and `rad(b)`, too.
// Therefore if `gcd(rad(a), rad(b)) = 1` then `gcd(a, b) = 1`. That's helpful since the iterative ''gcd()'' algorithm is faster with smaller parameters and `rad(x) <= x`.
#include <iostream>
#include <vector>
#include <cmath>
// greatest common divisor
unsigned int gcd(unsigned int a, unsigned int b)
{
while (a != 0)
{
unsigned int c = a;
a = b % a;
b = c;
}
return b;
}
int main()
{
unsigned int limit = 120000;
std::cin >> limit;
// sieve-like computation of rad
std::vector<unsigned int> rad(limit, 1);
for (unsigned int i = 2; i < limit; i++)
{
// if rad(i) > 1 then "a" is not prime
if (rad[i] > 1)
continue;
// process all multiples of a
for (unsigned int j = 1; i*j < limit; j++)
rad[i*j] *= i;
}
// walk through all potential a and b
unsigned long long sum = 0;
for (unsigned int a = 1; a < limit/2; a++)
{
unsigned int incrementB = 1;
// make sure that if a is even then b is always odd
if (a % 2 == 0)
incrementB = 2;
for (unsigned int b = a + 1; a + b < limit; b += incrementB)
{
auto c = a + b;
// this check is much faster than the gcd()-computation and eliminates most candidates
auto prodRad = rad[a] * rad[b] * (unsigned long long)rad[c];
if (prodRad >= c)
continue;
// no shared prime factors
if (gcd(rad[a], rad[b]) != 1)
continue;
// yes, found another abc-hit
sum += c;
}
}
// display result
std::cout << sum << std::endl;
return 0;
}