-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0138.cpp
162 lines (142 loc) · 4.36 KB
/
euler-0138.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// ////////////////////////////////////////////////////////
// # Title
// Special isosceles triangles
//
// # URL
// https://projecteuler.net/problem=138
// http://euler.stephan-brumme.com/138/
//
// # Problem
// Consider the isosceles triangle with base length, `b = 16`, and legs, `L = 17`.
//
// 
//
// By using the Pythagorean theorem it can be seen that the height of the triangle, `h = sqrt{172 - 82} = 15`, which is one less than the base length.
//
// With `b = 272` and `L = 305`, we get `h = 273`, which is one more than the base length, and this is the second smallest isosceles triangle with the property that `h = b \pm 1`.
//
// Find `sum{L}` for the twelve smallest isosceles triangles for which `h = b \pm 1` and `b`, `L` are positive integers.
//
// # Solved by
// Stephan Brumme
// July 2017
//
// # Algorithm
// Even though I felt right from the start that brute force can solve this problem, I tried it anyways.
// And within a few seconds the function ''bruteForce'' displayed these 7 solutions:
// 17, 305, 5473, 98209, 1762289, 31622993, 567451585
//
// I wasn't willing to dig deep into mathematical territory and decided to look hard at those numbers ...
// and yes, a pattern revealed:
// 17
// 305 = 17*18 - 1
// 5473 = 305*18 - 17
// 98209 = 5473*18 - 305
// 1762289 = 98209*18 - 5473
// 31622993 = 1762289*18 - 98209
// 567451585 = 31622993*18 - 1762289
//
// That's a surprisingly simple series:
// `x_0 = 1`
// `x_1 = 17`
// `x_n = x_{n-1} * 18 - x_{n-2}`
//
// My code looks a bit messy because of the Hackerrank modifications.
//
// # Hackerrank
// Not only 12 but up to `10^18` triangles have to be found.
// My code precomputes the first 100000 triangles (enough to pass 3 out of 4 test cases) and then
// performs a simple lookup.
//
// All numbers have to be modulo `10^9+7`.
//
// # Alternative
// You can apply Pell's equation to discover this sequence without "taking a hard look".
// And many Fibonacci numbers pop up along the way ...
#include <iostream>
#include <vector>
#include <cmath>
#define ORIGINAL
// find the first sevens solutions in a few seconds
void bruteForce(long long limit)
{
for (long long base = 2; base < limit; base += 2)
{
// both right-angled triangles with side lengths L, h, half
auto half = base / 2;
// two potential solutions
auto height1 = base - 1;
auto height2 = base + 1;
// compute L1 and L2
auto triangle1 = half * half + height1 * height1;
long long hypo1 = sqrt(triangle1);
if (hypo1 * hypo1 == triangle1)
std::cout << hypo1 << " => b=" << base << " h=" << height1 << " diff=" << (base - height1) << std::endl;
auto triangle2 = half * half + height2 * height2;
long long hypo2 = sqrt(triangle2);
if (hypo2 * hypo2 == triangle2)
std::cout << hypo2 << " => b=" << base << " h=" << height2 << " diff=" << (base - height2) << std::endl;
}
}
int main()
{
// precompute the first 10^6 solutions
std::vector<unsigned long long> solutions;
// the first seven solutions reveal a pattern ...
// 17
// 305 = 17*18 - 1
// 5473 = 305*18 - 17
// 98209 = 5473*18 - 305
// 1762289 = 98209*18 - 5473
// 31622993 = 1762289*18 - 98209
// 567451585 = 31622993*18 - 1762289
#ifdef ORIGINAL
const unsigned int MaxPrecompute = 12;
#else
const unsigned int MaxPrecompute = 1000000;
#endif
// first solution is 17
long long current = 17;
solutions.push_back(current);
// add it to the total
long long sum = current;
// previous solution ("zero-th" solution is 1
long long previous = 1;
for (unsigned int i = 2; i <= MaxPrecompute; i++)
{
// one more step ...
auto next = current * 18 - previous;
#ifndef ORIGINAL
// prevent negative numbers
const long long Modulo = 1000000007;
if (next < 0)
next += Modulo;
#endif
// next => current => previous
previous = current;
current = next;
// add solution
sum += current;
#ifndef ORIGINAL
// keep only residue
sum %= Modulo;
current %= Modulo;
#endif
// store solution
solutions.push_back(sum);
}
unsigned int tests = 1;
std::cin >> tests;
while (tests--)
{
unsigned long long smallest = 12;
std::cin >> smallest;
auto index = smallest - 1;
// not pre-computed ? => abort
if (index >= solutions.size())
return 0;
// look up result
std::cout << solutions[index] << std::endl;
}
return 0;
}