-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0144.cpp
185 lines (171 loc) · 6.61 KB
/
euler-0144.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// ////////////////////////////////////////////////////////
// # Title
// Investigating multiple reflections of a laser beam
//
// # URL
// https://projecteuler.net/problem=144
// http://euler.stephan-brumme.com/144/
//
// # Problem
// In laser physics, a "white cell" is a mirror system that acts as a delay line for the laser beam.
// The beam enters the cell, bounces around on the mirrors, and eventually works its way back out.
//
// The specific white cell we will be considering is an ellipse with the equation `4x^2 + y^2 = 100`
//
// The section corresponding to `-0.01 <= x <= +0.01` at the top is missing, allowing the light to enter and exit through the hole.
//
//  
//
// The light beam in this problem starts at the point `(0.0,10.1)` just outside the white cell, and the beam first impacts the mirror at `(1.4,-9.6)`.
//
// Each time the laser beam hits the surface of the ellipse, it follows the usual law of reflection "angle of incidence equals angle of reflection."
// That is, both the incident and reflected beams make the same angle with the normal line at the point of incidence.
//
// In the figure on the left, the red line shows the first two points of contact between the laser beam and the wall of the white cell;
// the blue line shows the line tangent to the ellipse at the point of incidence of the first bounce.
//
// The slope `m` of the tangent line at any point `(x,y)` of the given ellipse is: `m = -4x/y`
//
// The normal line is perpendicular to this tangent line at the point of incidence.
//
// The animation on the right shows the first 10 reflections of the beam.
//
// How many times does the beam hit the internal surface of the white cell before exiting?
//
// # Solved by
// Stephan Brumme
// June 2017
//
// # Algorithm
// I solved this problem using a combination of vector computations and playing with the formula of an ellipse.
//
// The structs ''Vector'' and ''Point'' are very simple. I could get rid of them and just use simple variables
// but I like to have my code clean and organized instead of short and unreadable.
//
// Each iteration of the main loop performs these tasks:
// 1. check the intersection ''to'' whether it belongs to the hole on top of the ellipse (and isn't actually a hole).
// 2. find the normal at point ''to''
// 3. reflect the ray's ''direction'' in relation to the normal
// 4. compute next intersection of the new ray
//
// I consider every intersection between `-0.01 <= x <= +0.01` and `y > 9.9` to be a valid exit point.
// (it's even sufficient to ask for `y > 0`, but don't change the `9.9` to `10` because of the curving of the ellipse).
//
// The reflection can be found very easily with the dot product (nice and short explanation: http://paulbourke.net/geometry/reflected/ )
//
// It took me quite some time to come up with a formula that computes the next intersection.
//
// The ray has a slope `s = y / x` and any point on the ray is described as
// (1) `y_2 = s(x_2 - x_1) + y_1`
//
// The ellipse was defined as `4x^2 + y^2 = 100` which is
// (2) `dfrac{x^2}{5} + dfrac{y^2}{10} = 1` (that means `a = 5` and `b = 10`)
//
// The first (already known) intersection occurs at
// (3) `4x_1^2 + y_1^2 = 1`
//
// The second (unknown) intersection will be at
// (4) `4x_2^2 + y_2^2 = 1`
//
// I replace in the latter formula (4) the variable `y_2` by the ray equation (1):
// (5) `4x_2^2 + (s(x_2 - x_1) + y_1)^2 = 1`
//
// Since the the ellipse equation (2) is always 1 for each point, I can write:
// (6) `4x_2^2 + (s(x_2 - x_1) + y_1)^2 = 4x_1^2 + y_1^2`
//
// (7) `4x_2^2 + s^2(x_2 - x_1)^2 + 2s(x_2 - x_1)y_1 + y_1^2 = 4x_1^2 + y_1^2`
//
// (8) `4x_2^2 + s^2(x_2 - x_1)^2 + 2s(x_2 - x_1)y_1 = 4x_1^2`
//
// (9) `4(x_2^2 - x_1^2) + s^2(x_2 - x_1)^2 + 2s(x_2 - x_1)y_1 = 0`
//
// (10) `4(x_2 - x_1)(x_2 + x_1) + s^2(x_2 - x_1)^2 + 2s(x_2 - x_1)y_1 = 0`
//
// Dividing by the term `(x_2^2 - x_1^2)`:
// (11) `4(x_2 + x_1) + s^2(x_2 - x_1) + 2s y_1 = 0`
//
// (12) `4x_2 + 4x_1 + s^2 x_2 - s^2 x_1 + 2s y_1 = 0`
//
// (13) `4x_1 - s^2 x_1 + 2s y_1 = -4x_2 - s^2 x_2`
//
// (14) `4x_1 - s^2 x_1 + 2s y_1 = x_2 (-4 - s^2)`
//
// (15) `dfrac{4x_1 - s^2 x_1 + 2s y_1}{-4 - s^2} = x_2`
//
// Once I know `x_2` it's a walk in the park to get `y_2` with the help of (1).
//
// # Alternative
// There are several approaches to this problem:
// - you can use trigonometric equations instead of vector computations.
// - the intersection line/ellipse often leads to a quadratic equation which I believe is more prone to rounding errors
//
// # Note
// I even get the correct result when replacing ''double'' by ''float''. That's surprising.
#include <iostream>
#include <cmath>
// a simple 2D vector
struct Vector
{
// create new vector
Vector(double x_, double y_) : x(x_), y(y_) {}
double x, y;
// compute length
double getLength() const
{
return sqrt(x*x + y*y);
}
// dot product
double dot(const Vector& other) const
{
return x * other.x + y * other.y;
}
};
// use a Vector for 2D points, too
typedef Vector Point;
int main()
{
// count reflections
unsigned int steps = 0;
// initial ray
Point from(0.0, 10.1);
Point to (1.4, -9.6);
while (true)
{
// exit ellipse when x is between -0.01 and +0.01 on the upper side of the ellipse
if (to.x >= -0.01 && to.x <= 0.01 && to.y > 10 - 0.1) // vertical radius is 10, subtract a bit because of curving
break;
// find inward pointing vector of the ellipse at intersection point
Vector normal(-4 * to.x, -to.y);
// normalize vector length
double length = normal.getLength();
normal.x /= length;
normal.y /= length;
// current direction of the ray
Vector direction(to.x - from.x, to.y - from.y);
// degenerated case ? ray will exit after only one bounce
if (direction.x == 0)
{
steps++; // same as steps = 1 in this case
break;
}
// reflect ray at intersection considering the normal
// a short explanation can be found here: http://paulbourke.net/geometry/reflected/
Vector reflect(0, 0);
reflect.x = direction.x - 2 * direction.dot(normal) * normal.x;
reflect.y = direction.y - 2 * direction.dot(normal) * normal.y;
// slope of the reflected ray
double slope = reflect.y / reflect.x;
// previous endpoint becomes the start point of the next iteration
from.x = to.x;
from.y = to.y;
// find next intersection
// I derived that strange formula in the initial comment section
to.x = (4*from.x - slope*slope*from.x + 2*slope*from.y) / (-4 - slope*slope);
to.y = slope * (to.x - from.x) + from.y;
// count iterations
steps++;
}
// display result
std::cout << steps << std::endl;
return 0;
}