-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0170.cpp
140 lines (128 loc) · 4.57 KB
/
euler-0170.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
// ////////////////////////////////////////////////////////
// # Title
// Find the largest 0 to 9 pandigital that can be formed by concatenating products
//
// # URL
// https://projecteuler.net/problem=170
// http://euler.stephan-brumme.com/170/
//
// # Problem
// Take the number 6 and multiply it by each of 1273 and 9854:
// `6 * 1273 = 7638`
// `6 * 9854 = 59124`
//
// By concatenating these products we get the 1 to 9 pandigital 763859124. We will call 763859124 the "concatenated product of 6 and (1273,9854)". Notice too, that the concatenation of the input numbers, 612739854, is also 1 to 9 pandigital.
//
// The same can be done for 0 to 9 pandigital numbers.
//
// What is the largest 0 to 9 pandigital 10-digit concatenated product of an integer with two or more other integers, such that the concatenation of the input numbers is also a 0 to 9 pandigital 10-digit number?
//
// # Solved by
// Stephan Brumme
// June 2017
//
// # Algorithm
// I analyze all pandigital numbers, beginning with the largest (''9876543210'') and slowly decrement towards ''1023456789''.
// The easiest way is to store the pandigital number in a ''std::string'' and call ''std::prev_permutation'' repeatedly (see my variable ''current'').
//
// A bold assumption is that the pandigital number only needs to be split into two parts `left` and `right` such that
// `left = factor * one` and `right = factor * two`. If `concat(factor, one, two)` is 10-pandigital then we found the result.
//
// Neither `left` nor `right` can begin with a zero. Any potential `factor` must be a divisor of `left` and `right`: `1 < factor <= gcd(left, right)`
// When looking at all 10-pandigital numbers (there are only `10! = 3628800` such numbers), I observed that all `factor` are multiples of 3.
//
// # Note
// Chances are that splitting the pandigital number into more than two parts produces valid results, too.
// Maybe I just got lucky by finding the correct solution.
//
// # Hackerrank
// The program is forced to use a certain output format (no big problem).
// My program fails to process the massive amount of test cases.
#include <string>
#include <iostream>
#include <algorithm>
// true, if x contains only distinct digits
bool isPandigital(unsigned long long x)
{
unsigned char used[10] = { 0 };
while (x > 0)
{
auto digit = x % 10;
// digit already used ?
if (used[digit] == 1)
return false;
used[digit]++;
x /= 10;
}
return true;
}
// greatest common divisor
unsigned int gcd(unsigned int a, unsigned int b)
{
while (a != 0)
{
unsigned int c = a;
a = b % a;
b = c;
}
return b;
}
int main()
{
unsigned int tests = 1;
std::cin >> tests;
while (tests--)
{
std::string current = "9876543210";
std::cin >> current;
// find next smaller pandigital number (only to avoid malicious input)
unsigned long long adjusted = std::stoll(current);
if (adjusted < 1023456789)
adjusted = 1023456789;
while (!isPandigital(adjusted))
adjusted--;
current = std::to_string(adjusted);
// start search
bool found = false;
do
{
// split into two parts and check each common divisor
for (size_t split = 1; split < current.size() && !found; split++)
{
// must not begin with a zero
if (current[0] == '0' || current[split] == '0')
continue;
auto left = std::stoll(current.substr(0, split));
auto right = std::stoll(current.substr(split));
// any common divisors ?
unsigned int shared = gcd(left, right);
const unsigned int MultipleOfThree = 3; // I saw that all divisors are always multiples of three
for (unsigned int factor = MultipleOfThree; factor <= shared; factor += MultipleOfThree)
{
// analyze all common divisors
if (left % factor == 0 &&
right % factor == 0)
{
// combine all digits
unsigned int one = left / factor;
unsigned int two = right / factor;
std::string sequence = std::to_string(factor) +
std::to_string(one) +
std::to_string(two);
// must have exactly 10 pandigital digits
if (sequence.size() == 10 && isPandigital(std::stoll(sequence)))
{
found = true;
std::cout << factor << "*(" << one << "," << two << ")=" << current << std::endl;
break;
}
}
}
}
// done ?
if (found)
break;
} while (std::prev_permutation(current.begin(), current.end()));
}
return 0;
}