-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0172.cpp
148 lines (137 loc) · 3.62 KB
/
euler-0172.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// ////////////////////////////////////////////////////////
// # Title
// Investigating numbers with few repeated digits
//
// # URL
// https://projecteuler.net/problem=172
// http://euler.stephan-brumme.com/172/
//
// # Problem
// How many 18-digit numbers n (without leading zeros) are there such that no digit occurs more than three times in n?
//
// # Solved by
// Stephan Brumme
// June 2017
//
// # Algorithm
// A straight-forward recursive solution:
// - start with an "empty" number (no digits at all)
// - append a digit (0 to 9) if that digit's limit isn't exceeded (''maxUse = 3'')
// - stop if enough digits where appended (''maxDigit = 18'')
//
// The number of used digits is converted to a fingerprint, which doesn't care about the order of digits because appending something
// to 12345 will produce the same number of combinations as appending to 54321.
//
// Since many fingerprints will occur repeatedly (fingerprint of 12345 is the same as the fingerprint of 54321) they are stored in a ''cache''.
#include <iostream>
// identify a combination of digits, order doesn't matter
union Fingerprint
{
struct
{
unsigned char zero : 2;
unsigned char one : 2;
unsigned char two : 2;
unsigned char three : 2;
unsigned char four : 2;
unsigned char five : 2;
unsigned char six : 2;
unsigned char seven : 2;
unsigned char eight : 2;
unsigned char nine : 2;
};
unsigned int id;
};
// 10 digits with 2 bits each => fingerprint's id is below 1 << 20
unsigned long long cache[1 << 20] = { 0 };
unsigned int maxDigits = 18; // a total of 18 digits
unsigned int maxUse = 3; // each digit at most 3 times
// compute number of possible numbers
unsigned long long search(Fingerprint current, unsigned int digits)
{
// done ?
if (digits == maxDigits)
return 1;
// use memoized results if possible
if (cache[current.id] > 0)
return cache[current.id];
// count combinations
unsigned long long result = 0;
// must not place a zero at the first position
if (digits > 0 && current.zero < maxUse)
{
auto next = current;
next.zero++;
result += search(next, digits + 1);
}
// the following if's are all the same, except that they increment next.one, next.two, next.three, ...
if (current.one < maxUse)
{
auto next = current;
next.one++;
result += search(next, digits + 1);
}
if (current.two < maxUse)
{
auto next = current;
next.two++;
result += search(next, digits + 1);
}
if (current.three < maxUse)
{
auto next = current;
next.three++;
result += search(next, digits + 1);
}
if (current.four < maxUse)
{
auto next = current;
next.four++;
result += search(next, digits + 1);
}
if (current.five < maxUse)
{
auto next = current;
next.five++;
result += search(next, digits + 1);
}
if (current.six < maxUse)
{
auto next = current;
next.six++;
result += search(next, digits + 1);
}
if (current.seven < maxUse)
{
auto next = current;
next.seven++;
result += search(next, digits + 1);
}
if (current.eight < maxUse)
{
auto next = current;
next.eight++;
result += search(next, digits + 1);
}
if (current.nine < maxUse)
{
auto next = current;
next.nine++;
result += search(next, digits + 1);
}
// add result to cache
cache[current.id] = result;
return result;
}
int main()
{
std::cin >> maxDigits >> maxUse;
// live test only: catch invalid input
if (maxDigits == 0 || maxDigits > 29 ||
maxUse == 0 || maxUse > 3)
return 1;
Fingerprint start;
start.id = 0;
std::cout << search(start, 0) << std::endl;
return 0;
}