-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0196.cpp
245 lines (214 loc) · 8.54 KB
/
euler-0196.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
// ////////////////////////////////////////////////////////
// # Title
// Prime Triplets
//
// # URL
// https://projecteuler.net/problem=196
// http://euler.stephan-brumme.com/196/
//
// # Problem
// Build a triangle from all positive integers in the following way:
// || 2 || 2 || 2 || 2 || 2 || 2 || 2 || 2 || 2 || 2 || 2 ||
// || 1 || || || || || || || || || || ||
// || __2__ || __3__ || || || || || || || || || ||
// || 4 || __5__ || 6 || || || || || || || || ||
// || __7__ || 8 || 9 || 10 || || || || || || || ||
// || __11__ || 12 || __13__ || 14 || 15 || || || || || || ||
// || 16 || __17__ || 18 || __19__ || 20 || 21 || || || || || ||
// || 22 || __23__ || 24 || 25 || 26 || 27 || 28 || || || || ||
// || __29__ || 30 || __31__ || 32 || 33 || 34 || 35 || 36 || || || ||
// || __37__ || 38 || 39 || 40 || __41__ || 42 || __43__ || 44 || 45 || || ||
// || 46 || __47__ || 48 || 49 || 50 || 51 || 52 || __53__ || 54 || 55 || ||
// || 56 || 57 || 58 || __59__ || 60 || __61__ || 62 || 63 || 64 || 65 || 66 ||
// . . .
//
// Each positive integer has up to eight neighbours in the triangle.
//
// A set of three primes is called a prime triplet if one of the three primes has the other two as neighbours in the triangle.
//
// For example, in the second row, the prime numbers 2 and 3 are elements of some prime triplet.
//
// If row 8 is considered, it contains two primes which are elements of some prime triplet, i.e. 29 and 31.
// If row 9 is considered, it contains only one prime which is an element of some prime triplet: 37.
//
// Define `S(n)` as the sum of the primes in row `n` which are elements of any prime triplet.
// Then `S(8)=60` and `S(9)=37`.
//
// You are given that `S(10000)=950007619`.
//
// Find `S(5678027) + S(7208785)`.
//
// # Solved by
// Stephan Brumme
// August 2017
//
// # Algorithm
// The last number of each row is a triangular number ( https://en.wikipedia.org/wiki/Triangular_number ):
// ''getNumber'' returns the number located in column ''x'' and row ''y'' based on the formula for triangular numbers.
// `= T(y-1) + x = dfrac{(y-1)(y-1+1)}{2} + x = dfrac{y(y-1)}{2} + x`
//
// A triplet always fits in a 3x3 group. However, the center of those 3x3 doesn't need to be located in row `n`:
// row `n` can be the top row, the center row or the bottom row of a 3x3 group.
// Thus I scan through all 3x3 groups which are centered around row `n-1`, `n` and `n+1`.
// ''processLine'' creates an array ''threePlus[]'' which is true for ''x'' if the 3x3 group centered around ''x'' contains at least 3 primes.
//
// The next step is to walk through row `n` and add the current number ''x'' to the result if:
// - ''x'' is a prime number
// - any 3x3 group centered in the 3x3 group of ''x'' has ''threePlus[] = true''
//
// My first idea was to include the Miller-Rabin primality test (from my [toolbox](/toolbox/)) but it was too slow.
// Then I wrote a segmented prime sieve similar to what you can find on my website http://create.stephan-brumme.com/eratosthenes/ (I called it "block-wise" algorithm).
//
// # Note
// My segmented sieve is a bitfield of all even numbers and its design follows the standard prime sieve from my [toolbox](/toolbox/).
#include <iostream>
#include <vector>
#include <cmath>
// ---------- standard prime sieve from my toolbox ----------
// note: a small tweak: fillSieve() aborts if sieve[] already has enough values
// odd prime numbers are marked as "true" in a bitvector
std::vector<bool> sieve;
// return true, if x is a prime number
bool isPrime(unsigned int x)
{
// handle even numbers
if ((x & 1) == 0)
return x == 2;
// lookup for odd numbers
return sieve[x >> 1];
}
// find all prime numbers from 2 to size
void fillSieve(unsigned int size)
{
// store only odd numbers
const unsigned int half = (size >> 1) + 1;
// already existing ?
if (sieve.size() >= half)
return;
// allocate memory
sieve.resize(half, true);
// 1 is not a prime number
sieve[0] = false;
// process all relevant prime factors
for (unsigned int i = 1; 2*i*i < half; i++)
// do we have a prime factor ?
if (sieve[i])
{
// mark all its multiples as false
unsigned int current = 3*i+1;
while (current < half)
{
sieve[current] = false;
current += 2*i+1;
}
}
}
// ---------- now problem-specific code ----------
// return number at position (x, y) where x <= y
unsigned long long getNumber(unsigned int x, unsigned int y)
{
// the last number in a line is a triangle number
// return x + T(y-1)
return x + y * (y - 1ULL) / 2;
}
std::vector<bool> segment;
unsigned long long segmentStart = 0;
// set segment[x] to true if x+from is prime
void fillSegmentedSieve(unsigned long long from, unsigned long long to)
{
// plain old sieve for all primes up to sqrt(to)
fillSieve(sqrt(to));
// first number covered by the segment
segmentStart = from | 1; // start with an odd number
// size of the segment
auto numValues = to - from + 1;
// assume all numbers are prime
segment.clear();
segment.resize(numValues + 1, true);
// cross off composites
for (unsigned long long p = 3; p*p <= to; p += 2)
if (isPrime(p))
{
// find smallest multiple in the segment
auto smallest = from - (from % p) + p;
// only odd multiples
if (smallest % 2 == 0)
smallest += p;
// walk through all odd multiples
for (size_t i = smallest; i <= to; i += 2*p)
segment[(i - segmentStart) / 2] = false;
}
}
// return true if number at position (x,y) is prime
// check boundaries, too (there parameter x can be negative)
bool isPrimeInSegment(int x, int y)
{
// out of bounds ?
if (x < 1 || x > y)
return false;
// check segmented sieve at that position
auto current = getNumber(x, y);
// reject all even number (except 2)
if (current % 2 == 0)
return current == 2;
// luokup
return segment[(current - segmentStart) / 2];
}
// return sum of all prime triplets in a certain line
unsigned long long processLine(unsigned int line)
{
// need to look two lines up and down
auto sieveFrom = getNumber(1, line - 2);
auto sieveTo = getNumber(1, line + 3) - 1;
// prevent line - 2 from becoming negative and producing strange results
if (line <= 2)
sieveFrom = 1;
// find all primes numbers for those 5 lines
fillSegmentedSieve(sieveFrom, sieveTo);
// find all primes with at least two direct neighbors that are prime, too
std::vector<bool> threePlus(segment.size(), false);
for (unsigned int y = line - 1; y <= line + 1; y++)
for (unsigned int x = 1; x <= y; x++)
{
// current number must be a prime
if (!isPrimeInSegment(x, y))
continue;
// count all primes in the 3x3 neighborhood (one step up,up-right,right,down-right,down, ...)
auto countPrimes = 0; // actually countPrimes is always at least 1 because there must be a prime at deltaX = deltaY = 0
for (int deltaX = -1; deltaX <= +1; deltaX++)
for (int deltaY = -1; deltaY <= +1; deltaY++)
if (countPrimes < 3 && isPrimeInSegment(x + deltaX, y + deltaY))
countPrimes++;
// at least three primes ?
threePlus[getNumber(x, y) - segmentStart] = (countPrimes >= 3);
}
// now look at the current line and compute sum of all triplets
unsigned long long sum = 0;
for (unsigned int x = 1; x <= line; x++)
{
// current number must be a prime
auto current = getNumber(x, line);
if (!isPrimeInSegment(x, line))
continue;
// look at 3x3 neighborhood whether at least one cell has threePlus[] = true
bool atLeastThree = false;
for (int deltaX = -1; deltaX <= +1; deltaX++)
for (int deltaY = -1; deltaY <= +1; deltaY++)
atLeastThree |= threePlus[getNumber(x + deltaX, line + deltaY) - segmentStart];
// found a triplet ?
if (atLeastThree)
sum += current;
}
return sum;
}
int main()
{
unsigned int one = 5678027;
unsigned int two = 7208785;
std::cin >> one >> two;
// fillSieve can re-use existing data if the second number not bigger than the first
if (one < two)
std::swap(one, two);
std::cout << processLine(one) + processLine(two) << std::endl;
return 0;
}