-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0204.cpp
83 lines (71 loc) · 2 KB
/
euler-0204.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
// ////////////////////////////////////////////////////////
// # Title
// Generalised Hamming Numbers
//
// # URL
// https://projecteuler.net/problem=204
// http://euler.stephan-brumme.com/204/
//
// # Problem
// A Hamming number is a positive number which has no prime factor larger than 5.
// So the first few Hamming numbers are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15.
// There are 1105 Hamming numbers not exceeding `10^8`.
//
// We will call a positive number a generalised Hamming number of type `n`, if it has no prime factor larger than `n`.
// Hence the Hamming numbers are the generalised Hamming numbers of type 5.
//
// How many generalised Hamming numbers of type 100 are there which don't exceed `10^9`?
//
// # Solved by
// Stephan Brumme
// May 2017
//
// # Algorithm
// After all prime numbers between 2 and ''hamming'' are found, the function ''search'' builds all combinations of prime factors.
#include <iostream>
#include <vector>
// user-defined limits
unsigned int limit = 1000000000;
unsigned int hamming = 100;
// short list of involved primes
std::vector<unsigned int> primes;
// return number of hamming numbers where one prime factor is at least primes[indexMinPrime]
// and which is a multiple of x
unsigned int search(unsigned long long x = 1, unsigned int indexMinPrime = 0)
{
unsigned int result = 1;
// multiply current number by all allowed primes
for (auto i = indexMinPrime; i < primes.size(); i++)
{
auto product = primes[i] * x;
// too large ?
if (product > limit)
break;
// multiply by more primes
result += search(product, i);
}
return result;
}
int main()
{
std::cin >> hamming >> limit;
// the usual prime sieve
for (unsigned int i = 2; i <= hamming; i++)
{
bool isPrime = true;
for (auto p : primes)
{
if (p*p > i)
break;
if (i % p == 0)
{
isPrime = false;
break;
}
}
if (isPrime)
primes.push_back(i);
}
// count hamming numbers
std::cout << search() << std::endl;
}