-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0213.cpp
217 lines (199 loc) · 7.99 KB
/
euler-0213.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
// ////////////////////////////////////////////////////////
// # Title
// Flea Circus
//
// # URL
// https://projecteuler.net/problem=213
// http://euler.stephan-brumme.com/213/
//
// # Problem
// A 30x30 grid of squares contains 900 fleas, initially one flea per square.
// When a bell is rung, each flea jumps to an adjacent square at random (usually 4 possibilities, except for fleas on the edge of the grid or at the corners).
//
// What is the expected number of unoccupied squares after 50 rings of the bell? Give your answer rounded to six decimal places.
//
// # Solved by
// Stephan Brumme
// July 2017
//
// # Algorithm
// Assume there is a 3x2 with two fleas A and B:
// || 4 || 4 || 4 ||
// || A ++ . ++ . ||
// || . ++ B ++ . ||
//
// The probability `land_{A,1}(x,y)` of flea A to land on a certain square after one jump is:
// || 4 || 4 || 4 ||
// || 0 ++ 0.5 ++ 0 ||
// || 0.5 ++ 0 ++ 0 ||
// Note: Flea A had 2 options when it started at square (1,2), therefore `directions(1,2) = 100% / 2 = 50% = 0.5`.
//
// The probability `land_{B,1}(x,y)` of flea B to land on a certain square after one jump is:
// || 4 || 4 || 4 ||
// || 0 ++ 0.333 ++ 0 ||
// || 0.333 ++ 0 ++ 0.333 ||
// Note: Flea B had 3 options when it started at square (2,1), therefore `directions(2,1) = 100% / 3 = 33.3% = 0.333`.
//
// To find the probability of flea A to be __NOT__ on a certain square I have to compute `empty_{A,1}(x,y) = 1 - land_{A,1}(x,y)`:
// || 4 || 4 || 4 ||
// || 1 ++ 0.5 ++ 1 ||
// || 0.5 ++ 1 ++ 1 ||
//
// And the same for flea B: `empty_{B,1}(x,y) = 1 - land_{B,1}(x,y)`:
// || 4 || 4 || 4 ||
// || 1 ++ 0.666 ++ 1 ||
// || 0.666 ++ 1 ++ 0.666 ||
//
// A square is empty is neither flea A nor flea B landed on it: `empty_1(x,y) = empty_{A,1}(x,y) * empty_{B,1}(x,y)`:
// || 4 || 4 || 4 ||
// || 1 ++ 0.333 ++ 1 ||
// || 0.333 ++ 1 ++ 0.666 ||
//
// So the expected total number of empty squares after one jump is `sum{empty_1} = 1 + 0.333 + 1 + 0.333 + 1 + 0.666 = 4.333`.
// There were exactly four empty squares before the first jump but there are on average 4.333 empty squares after one jump (==> plus 0.333)
// because it's possible that both fleas land on the same square, leaving five square empty instead of four.
//
// In the second iteration, the probability `land_{A,2}(x,y)` of flea A depends on the probability of being on the square in the previous iteration, too.
// The probabilities `land_{A,2}(x,y)` of flea A after two jumps are:
// || 4 || 4 || 4 ||
// || 0.416 ++ 0 ++ 0.166 ||
// || 0 ++ 0.416* ++ 0 ||
//
// Let's examine the square `land_{A,2}(2,1)` which is denoted by a star:
// `land_{A,2}(2,1) = land_{A,1}(2,2) * directions(2,2) + land_{A,1}(1,1) * directions(1,1) = 0.5 * 0.333 + 0.5 * 0.5 = 0.416`.
//
// ## Implementation
// Initially all squares are empty, therefore ''empty[x][y] = 1''.
//
// Then my program tracks each a single flea (such as flea A or B) over 50 rounds.
// It has a grid ''current'' which is intially zero and contains a single 1 at the start position of the flea.
// After each jump, the probabilities of each square the flea can jump to are updated and stored in ''next''.
// If all squares are processed, ''next'' is copied to ''current''.
// After 50 rounds, the "emptiness" of each square is ''empty[x][y] *= 1 - current[x][y]''.
//
// This process is repeated for all 30x30 fleas after which the sum of all squares in ''empty'' is the result.
//
// # Note
// The grid offers several opportunies to exploit symmetries.
// I mirror along the x- and/or y-axis if possible (see ''#define FAST_SYMMETRY'').
// In the end I get a 3x speedup.
//
// You could mirror along the diagonals, too, but then the code might get messy.
//
// # Alternative
// Even though the algorithm is pretty simple, I struggled with a few details and couldn't find the correct answer for a while.
// Therefore I wrote a Monte-Carlo simulation "to get a feeling" for the result.
// Obviously, the Monte-Carlo simulation wasn't able to compute an exact result, even after millions of repetitions.
// But it helped me to spot my errors and fix them.
#include <iostream>
#include <iomanip>
#include <vector>
// size of the flea circus
unsigned int width = 30;
unsigned int height = 30;
// number of jumps for each flea
unsigned int rounds = 50;
// a fixed 2D array
typedef std::vector<std::vector<double>> Grid;
// it looks weird, but the inner array describes the second index
// create a 2D (width x height) and set all elements to initialValue
Grid makeGrid(double initialValue)
{
Grid result(width);
for (auto& row : result)
row.resize(height, initialValue);
return result;
}
int main()
{
// read parameters
std::cin >> width >> height >> rounds;
// probability that squares are empty
// ==> no fleas yet, therefore "emptiness" probability is 1 (=100%) for each square
Grid empty = makeGrid(1);
// use symmetry to speed up the process
bool mirrorX = false;
bool mirrorY = false;
unsigned int maxX = width;
unsigned int maxY = height;
#define FAST_SYMMETRY
#ifdef FAST_SYMMETRY
if (width % 2 == 0)
{
mirrorX = true;
maxX = width / 2;
}
if (height % 2 == 0)
{
mirrorY = true;
maxY = height / 2;
}
#endif
// analyze each flea
for (unsigned int startX = 0; startX < maxX; startX++)
for (unsigned int startY = 0; startY < maxY; startY++)
{
// drop a single flea at (x,y):
// probability of seeing the flea is zero for each square ...
Grid current = makeGrid(0);
// ... except for the square where it starts
current[startX][startY] = 1;
// trace probability of landing at each square after a few rounds
for (unsigned int round = 0; round < rounds; round++)
{
// track probability of seeing the flea after one more jump
Grid next = makeGrid(0);
// look at each square from the previous round
for (unsigned int x = 0; x < width; x++)
for (unsigned int y = 0; y < height; y++)
{
// flea couldn't be there ? ==> skip
if (current[x][y] == 0)
continue;
// count number of possible destination squares
unsigned int directions = 4;
if (x == 0 || x == width - 1)
directions--;
if (y == 0 || y == height - 1)
directions--;
// probability of landing on a square is
// "probability of starting at current square" / "number of options"
double probability = current[x][y] / directions;
// add probability to each allowed destination square
if (x > 0)
next[x - 1][y] += probability;
if (x < width - 1)
next[x + 1][y] += probability;
if (y > 0)
next[x][y - 1] += probability;
if (y < height - 1)
next[x][y + 1] += probability;
}
current = std::move(next);
}
// 1. current[x][y] contains the probability that our flea is on square (x,y) after xx rounds
// 2. the probability of being empty is the opposite, it's: 1 - current[x][y]
// 3. and the probability that no flea finishes on that square (no matter where it started)
// is the product of the "emptiness" probabilities of all fleas
for (unsigned int x = 0; x < width; x++)
for (unsigned int y = 0; y < height; y++)
{
empty[x][y] *= 1 - current[x][y];
// use symmetries
if (mirrorX)
empty[x][y] *= 1 - current[width - 1 - x][y];
if (mirrorY)
empty[x][y] *= 1 - current[x][height - 1 - y];
if (mirrorX && mirrorY)
empty[x][y] *= 1 - current[width - 1 - x][height - 1 - y];
}
}
// sum of all probabilities
double result = 0;
for (unsigned int x = 0; x < width; x++)
for (unsigned int y = 0; y < height; y++)
result += empty[x][y];
// display result
std::cout << std::fixed << std::setprecision(6) << result << std::endl;
return 0;
}