-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0226.cpp
188 lines (168 loc) · 6.78 KB
/
euler-0226.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
// ////////////////////////////////////////////////////////
// # Title
// A Scoop of Blancmange
//
// # URL
// https://projecteuler.net/problem=226
// http://euler.stephan-brumme.com/226/
//
// # Problem
// The blancmange curve is the set of points `(x,y)` such that `0 <= x <= 1` and `y = sum_{n=0}^{infinity} dfrac{s(2^n x)}{2^n}`,
// where `s(x)` is the distance from `x` to the nearest integer.
//
// The area under the blancmange curve is equal to `\frac12` shown in pink in the diagram below.
// 
//
// Let `C` be the circle with centre `(\frac14, \frac12)` and radius `\frac14`, shown in black in the diagram.
//
// What area under the blancmange curve is enclosed by `C`?
// Give your answer rounded to eight decimal places in the form 0.abcdefgh
//
// # Solved by
// Stephan Brumme
// September 2017
//
// # Algorithm
// My idea is:
// - find the left and right intersection of the circle with the blancmange curve
// - numerically integrate the area between those limits
//
// I saw only two intersections in the image and boldly assumed that there exist only those two intersections.
// The right intersection seems to be pretty close to the centre of the blancmange.
//
// The function ''S(x)'' evaluates the given formula: it runs several iterations for ''n = 0,1,2,...''.
// The denominator grows much faster than the numerator and when a term is below my accuracy threshold ''Epsilon'' then I stop and return the sum.
//
// If `(x_b, y_b)` represent a point on the blancmange curve and `(x_c, y_c)` a point on the circle then each intersection is a solution of
// (1) `d_x = | x_b - x_c |` and `d_y = | y_b - y_c |` and radius `r`
// (2) `r^2 = d_x^2 + d_y^2`
//
// ''findIntersection()'' calls ''S()'' a lot: it slowly walks along the curve `y_b = S(x_b)` until it is too far from the circle.
// Then it turns around and walks towards the circle's center but with 50% of the previous step size.
// There are four different cases to consider which make my function look ugly and I suspect this can be done a lot better.
// Nevertheless, the two intersections are found pretty fast (and the right one is indeed at `x = 0.5`).
//
// In order to numerically integrate the area shared by circle and blancmange curve I have to compute
// (3) `integral_{x_1}^{x^2} y_b - y_c`
// where `x_1` and `x_2` are the intersections (I call them ''from'' and ''to'' in my code).
//
// Integrating the circle needs a bit of tweaking: for a circle centered at the origin I can say
// (4) `r^2 = x^2 + y^2`
// (5) `y = sqrt{r^2 - x^2}`
//
// There are two solutions: the "upper" and the "lower" half of the circle. From the image it's obvious that only the lower half is of interest.
// Shifting the circle to an arbitrary position changes (5) to
// (6) `y_c - y = sqrt{r^2 - (x_c - x)^2}`
// (7) `y = y_c - sqrt{r^2 - (x - x_c)^2}`
//
// My program subtracts (7) from (3). I found that a step size of 0.00001 produces the correct result.
// A larger step size has rounding errors while smaller step sizes are much slower.
//
// # Note
// I started with incredibly small values of ''Epsilon'' and ''step'' because I suspected a heavy influence of rounding errors.
// After a short debugging session I saw that much larger values still produce the correct result.
//
// Maybe my thresholds are too tightly related to the default values of the problem such that the live test isn't correct in all cases (last digits could be "garbage").
#include <iostream>
#include <iomanip>
#include <cmath>
// smallest error threshold that still produces the correct output
const double Epsilon = 0.00000001;
// compute S(x) for the blancmange curve
double S(double x)
{
// https://en.wikipedia.org/wiki/Blancmange_curve
double result = 0;
for (unsigned int n = 0; ; n++) // no abort-condition, exit when error is below epsilon threshold
{
auto power = pow(2, n);
auto parameterS = power * x;
// distance to smaller integer
auto s = parameterS - floor(parameterS);
// if > 0.5 then the bigger integer is closer
if (s > 0.5)
s = 1 - s;
auto add = s / power;
result += add;
// enough precision ?
if (add < Epsilon)
return result;
}
}
// find intersection of S and the circle by scanning x with increment step, abort if precision exceeds epsilon
double findIntersection(double circleX, double circleY, double radius, double x, double step)
{
while (true)
{
// current position on the blancmange curve
auto y = S(x);
// distance to the circle's center
auto deltaX = x - circleX;
auto deltaY = y - circleY;
auto distance = sqrt(deltaX * deltaX + deltaY * deltaY);
// when distance = radius, then I'm finished (allow a certain error margin Epsilon)
auto error = fabs(distance - radius);
if (error < Epsilon)
return x;
// will be true if I'm going in the wrong direction:
// then turn around and decrease the step size
bool turnAround = false;
if (distance < radius) // keep "going away" from the circle's center
{
// to the right of the circle's center
if (deltaX > 0 && step < 0)
turnAround = true;
// to the left of the circle's center
if (deltaX < 0 && step > 0)
turnAround = true;
}
else // I'm too far from the circle, need to "come back"
{
// to the right of the circle's center
if (deltaX > 0 && step > 0)
turnAround = true;
// to the left of the circle's center
if (deltaX < 0 && step < 0)
turnAround = true;
}
// switch direction, smaller steps
if (turnAround)
step = -step / 2;
// next step
x += step;
}
}
// numerically integrate area inside the circle
double integrate(double circleX, double circleY, double radius, double from, double to, double step)
{
double result = 0;
for (auto x = from; x <= to; x += step)
{
auto upper = S(x);
// basic circle is: r^2 = x^2 + y^2
// solved for y: y = sqrt(r^2 - x^2)
// I can ignore the second solution which belongs to the "upper" part of the circle
// however, the current circle isn't centered at the origin, therefore
// y = circleY - sqrt(r^2 - (x - circleX)^2)
auto lower = circleY - sqrt(radius*radius - (x - circleX)*(x - circleX));
// add area
result += (upper - lower) * step;
}
return result;
}
int main()
{
auto circleX = 0.25;
auto circleY = 0.5;
auto radius = 0.25;
std::cin >> circleX >> circleY >> radius;
std::cout << std::fixed << std::setprecision(8);
// find intersections
auto from = findIntersection(circleX, circleY, radius, circleX, -0.1);
auto to = findIntersection(circleX, circleY, radius, circleX, +0.1);
// start numerical integration
auto step = 0.00001;
auto area = integrate(circleX, circleY, radius, from, to, step);
std::cout << area << std::endl;
return 0;
}