-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0231.cpp
190 lines (167 loc) · 6.13 KB
/
euler-0231.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// ////////////////////////////////////////////////////////
// # Title
// The prime factorisation of binomial coefficients
//
// # URL
// https://projecteuler.net/problem=231
// http://euler.stephan-brumme.com/231/
//
// # Problem
// The binomial coefficient `^10 C_3 = 120`.
// `120 = 23 * 3 * 5 = 2 * 2 * 2 * 3 * 5`, and `2 + 2 + 2 + 3 + 5 = 14`.
// So the sum of the terms in the prime factorisation of `^10 C_3` is 14.
//
// Find the sum of the terms in the prime factorisation of `^20000000 C_15000000`.
//
// # Solved by
// Stephan Brumme
// June 2017
//
// # Algorithm
// Aside from a standard prime sieve, the main work is done in ''add(n)'':
//
// The binomial coefficient is: `^n{C_k} = {{n}choose{k}} = dfrac{n!}{(n-k)! k!}`
// where the factorial is `n! = 1 * 2 * 3 * 4 * ... * n`, e.g. `10! = 1 * 2 * 3 * 4 * ... * 10`.
//
// However, the problem statement doesn't ask for the factorial but the sum of prime factors of all elements in the factorial sequence.
// That means `add(10!) = 1 + 2 + 3 + (2 + 2) + 5 + (2 + 3) + 7 + (2 + 2 + 2) + (3 + 3) + (2 + 5) = 45`.
// The main insight here is that `add(a * b) = add(a) + add(b)`.
//
// You can see that every second number contains prime factor 2, every third prime factor 3, every fifth prime factor 5 ... and so on.
// There are `\lfloor frac{10}{2} \rfloor = 5` elements which contain prime factor 2 at least once. That's a sum of `2 * 5 = 10`.
// There are `\lfloor frac{10}{2^2} \rfloor = 2` elements which contain prime factor 2 at least twice. That's a sum of `2 * 2 = 4` on top.
// There are `\lfloor frac{10}{2^3} \rfloor = 1` elements which contain prime factor 2 at least three times. That's a sum of `2 * 1 = 2` on top.
// The sum of all prime factors 2 is `10 + 4 + 2 = 16`.
//
// Following the same logic, but this time prime factor 3:
// There are `\lfloor frac{10}{3} \rfloor = 3` elements which contain prime factor 3 at least once. That's a sum of `3 * 3 = 9`.
// There are `\lfloor frac{10}{3^2} \rfloor = 1` elements which contain prime factor 3 at least twice. That's a sum of `3 * 1 = 3`.
// The sum of all prime factors 3 is `9 + 3 = 12`.
//
// Now the algorithm becomes apparent:
// - iterate over all potential prime factors ''p''
// - compute how many numbers contain ''p'', add ''p * count'' to the sum
// - compute how many numbers contain ''p^2'', add ''p * count'' to the sum
// - compute how many numbers contain ''p^3'', add ''p * count'' to the sum
// - ...
//
// # Alternative
// My first approach was to generate a huge look-up table:
// - if a number ''i'' is a prime number, set ''sum[i] = i''
// - then for each number ''i'', multiply it by all primes ''p'' and set ''sum[i * p] = sum[i] + p''
// - add all ''sums[]'' up to ''i'', that's simply ''sums[i] += sums[i - 1]'' because all ''i'' are processed in increasing order
//
// That way more than 160 MByte RAM were used - which would have been a new record for my Project Euler solutions.
// I felt very uncomfortable of that memory consumption for such a "small" problem. And it was about 10x slower.
// So I spent a whole commuter ride thinking about the problem and came up with the current solution ...
// Note: read access to that precomputed table is extremely fast ! If you need to query heaps of factorial prime sums then
// my first approach might be an actually viable solution.
#include <iostream>
#include <vector>
#include <vector>
// odd prime numbers are marked as "true" in a bitvector
std::vector<bool> sieve;
// collection of all primes from the sieve (I do this because it's faster)
std::vector<unsigned int> primes = { 2 };
// return true, if x is a prime number
bool isPrime(unsigned int x)
{
// handle even numbers
if ((x & 1) == 0)
return x == 2;
// lookup for odd numbers
return sieve[x >> 1];
}
// find all prime numbers from 2 to size
void fillSieve(unsigned int size)
{
// store only odd numbers
const unsigned int half = size >> 1;
// allocate memory
sieve.resize(half, true);
// 1 is not a prime number
sieve[0] = false;
// process all relevant prime factors
for (unsigned int i = 1; 2*i*i < half; i++)
// do we have a prime factor ?
if (sieve[i])
{
// mark all its multiples as false
unsigned int current = 3*i+1;
while (current < half)
{
sieve[current] = false;
current += 2*i+1;
}
}
}
// ----- here the main algorithm starts -----
// return sum of all prime factors of n!
unsigned long long add(unsigned int n)
{
unsigned long long sum = 0;
for (auto p : primes)
{
// prime too large ? => done
if (p > n)
return sum;
// start with p^1, then p^2 in next iteration
unsigned long long multipleP = p;
// initial count
unsigned long long count = n / multipleP;
do
{
// adjust result
sum += p * count;
// increase exponent by one, that means p^i => p^(i+1)
multipleP *= p;
// update count for next iteration
count = n / multipleP;
} while (count > 0); // multipleP > n
}
return sum;
}
// ----- below is my first approach -----
// my first attempt: compute a huge lookup table where
// (code not used anymore)
std::vector<unsigned long long> sums;
void generateTable(unsigned int limit)
{
sums.resize(limit + 1, 0);
for (unsigned int i = 2; i < sums.size(); i++)
{
// prime number ? its only prime factor is the number itself
if (sums[i] == 0)
sums[i] = i;
// multiply with all prime numbers
for (auto p : primes)
{
// too large ?
if (i * p >= sums.size())
break;
// add current prime factor
sums[i * p] = sums[i] + p;
}
// add all prime factors of (i-1)! to i
// => that's the sum of prime factors of i!
sums[i] += sums[i - 1];
}
}
int main()
{
// read input values n >= k
unsigned int n = 20000000;
unsigned int k = 15000000;
std::cin >> n >> k;
// generate all prime numbers
fillSieve(n);
// extract prime numbers
for (unsigned int i = 3; i <= n; i += 2)
if (isPrime(i))
primes.push_back(i);
std::cout << add(n) - (add(n - k) + add(k)) << std::endl;
// older, slower algorithm
//generateTable(n);
//std::cout << sums[n] - (sums[n - k] + sums[k]) << std::endl;
return 0;
}