-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0237.cpp
262 lines (237 loc) · 10.4 KB
/
euler-0237.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// ////////////////////////////////////////////////////////
// # Title
// Tours on a 4 x n playing board
//
// # URL
// https://projecteuler.net/problem=237
// http://euler.stephan-brumme.com/237/
//
// # Problem
// Let `T(n)` be the number of tours over a `4 * n` playing board such that:
// - The tour starts in the top left corner.
// - The tour consists of moves that are up, down, left, or right one square.
// - The tour visits each square exactly once.
// - The tour ends in the bottom left corner.
//
// The diagram shows one tour over a `4 * 10` board:
//
// 
//
// `T(10)` is 2329. What is `T(10^12) mod 10^8`?
//
// # Solved by
// Stephan Brumme
// October 2017
//
// # Algorithm
// A nice problem that you can easily understand within a few seconds. But it took a few days to come up with a solution ...
//
// Of course I immediately wrote a ''bruteForce'' algorithm and it solves the `T(10)` case. Anything beyond that is impossible.
//
// The main realization was to split the whole board in its columns.
// I identified 15 different columns (A - O) which can have a unique "flow" on their left and right border.
// The term "flow" means the chronological way how a piece moves across the board.
//
// The arrows symbolize the "flow" in and out of a column while hash signs stand for "no border crossing":
//
// || 4 || 4 || 4 || 4 || 4 ||
// ||! A ++ B ++ C ++ D ++ E ||
// || ==> ==> ++ ==> ==> ++ ==> ==> ++ ==> ==> ++ ==> ## ||
// || <== <== ++ <== ## ++ ## <== ++ <== <== ++ <== ## ||
// || ==> ==> ++ ==> ## ++ ## ==> ++ ==> ## ++ ==> ==> ||
// || <== <== ++ <== <== ++ <== <== ++ <== ## ++ <== <== ||
//
// || 4 || 4 || 4 || 4 || 4 ||
// ||! F ++ G ++ H ++ I ++ J ||
// || ==> ==> ++ ## ==> ++ ==> ## ++ ## ==> ++ ==> ==> ||
// || <== <== ++ ## <== ++ ## ==> ++ ==> ## ++ <== ## ||
// || ## ==> ++ ==> ==> ++ ## <== ++ <== ## ++ ## ## ||
// || ## <== ++ <== <== ++ <== ## ++ ## <== ++ ## <== ||
//
// || 4 || 4 || 4 || 4 || 4 ||
// ||! K ++ L ++ M ++ N ++ O ||
// || ==> ## ++ ==> ==> ++ ## ==> ++ ==> ## ++ ==> ## ||
// || ## ## ++ ## <== ++ ## ## ++ <== ## ++ ## ## ||
// || ## ==> ++ ## ## ++ ==> ## ++ ==> ## ++ ## ## ||
// || <== <== ++ <== ## ++ <== <== ++ <== ## ++ <== ## ||
//
// Columns N and O can only be found at the right edge of the board.
//
// Unfortunately it's not sufficient to represent the flow by arrows because they are still ambigious:
// there are three different chronological orders how the "flow" can pass through column A.
//
// If I look at each column's left and right border then there are just 6 patterns for these borders.
// With a proper labelling of the flow's chronological order (indicated by 1,2,3,4 and a hash means "no crossing") I get 8 different borders:
//
// || 2 || 2 || 2 || 2 || 2 || 2 || 2 || 2 ||
// || 1 ++ 1 ++ 1 ++ # ++ # ++ 1 ++ 3 ++ # ||
// || # ++ 2 ++ 2 ++ 1 ++ # ++ 4 ++ 2 ++ # ||
// || # ++ # ++ 3 ++ 2 ++ 1 ++ 3 ++ 1 ++ # ||
// || 2 ++ # ++ 4 ++ # ++ 2 ++ 2 ++ 4 ++ # ||
//
// The function ''fill()'' stores the borders of each column, e.g. column C is
// ''neighbors.insert( { "1##2", "1234" } );''
// Trust me, getting all this stuff right was a lot of work: I made tons of mistakes !
//
// I wrote two algorithms: a simple one that verifies `T(10)` and a much faster one to solve `T(10^12)`.
// ''slow()'' linearly goes through all borders that are allowed on the right side of the current border and stops if it reaches the right side of the board.
// Assuming that there are about 3 borders that are compatible in such a way, the routine analyzes `3^width` combinations.
// There's no way it can solve `T(10^12)` - but I really needed this algorithm to get my borders right.
// When the output finally matched the results of ''bruteForce'' I went on to write a faster (and more complex) algorithm.
//
// ''fast()'' is a divide-and-conquer approach:
// - I treat a group of columns as a blackbox where I only knows its left and right border
// - if I cut through this blackbox at an arbitrary point then any of the 8 borders could be found
// - well, that's not quite right, since the 8th border is reserved for the right-most border of the board ==> only 7 borders "inside" the blackbox
// - then the number of combinations of a blackbox is the product of its left and right half
// - if I keep doing this until the blackbox contains only a single column then I check whether this type of column is valid
//
// This isn't much faster than what ''slow()'' does ... but when the blackbox becomes smaller, I process the same kinds of blackboxes over and over again.
// Thus memoization drastically reduced the number of __different__ blackboxes. At the end, ''cache'' contains 3417 values.
//
// # Note
// Even though the result is found within about 0.02 seconds, I felt that dividing each blackbox in the middle isn't optimal:
// if I try to divide the blackbox in such a way that at least one half's size is a power of two (that means `2^i`) then ''cache'' contains only 2031 values.
// Moreover, the program runs about 50% faster.
//
// Replacing the ''std::string'' by plain integers would be still faster but I think it would be much harder to understand the code.
//
// # Alternative
// I was blown away by the simple solutions found by others: they discovered a relationship between `T(n)` and `T(n-1)`, ..., `T(n-4)`.
// Incredible stuff - or maybe just looked up in OEIS A181688.
#include <iostream>
#include <set>
#include <map>
#include <vector>
#include <tuple>
// assuming that the route could exceed the left border I get these states for the left-most and right-most borders:
typedef std::string Border;
const Border LeftBorder = "1##2";
const Border RightBorder = "####";
// all possible borders that can be found inside the grid
std::set<Border> borders;
// define which borders can be next to each other
std::set<std::pair<Border, Border>> neighbors;
// set up the containers "borders" and "neighbors"
void fill()
{
// the following lines are derived from my drawings above
// left right column
neighbors.insert( { "1234", "1234" } ); // A
neighbors.insert( { "1432", "1432" } ); // A
neighbors.insert( { "3214", "3214" } ); // A
neighbors.insert( { "1432", "1##2" } ); // B
neighbors.insert( { "3214", "1##2" } ); // B
neighbors.insert( { "1##2", "1234" } ); // C
neighbors.insert( { "1234", "12##" } ); // D
neighbors.insert( { "1234", "##12" } ); // E
neighbors.insert( { "12##", "1432" } ); // F
neighbors.insert( { "##12", "3214" } ); // G
neighbors.insert( { "1##2", "#12#" } ); // H
neighbors.insert( { "#12#", "1##2" } ); // I
neighbors.insert( { "12##", "1##2" } ); // J
neighbors.insert( { "1##2", "##12" } ); // K
neighbors.insert( { "1##2", "12##" } ); // L
neighbors.insert( { "##12", "1##2" } ); // M
neighbors.insert( { "1234", RightBorder } ); // N
neighbors.insert( { "1##2", RightBorder } ); // O
for (auto x : neighbors)
borders.insert(x.first);
}
// fast search in O(log n)
unsigned long long search(const Border& left, const Border& right, unsigned long long length, unsigned int modulo)
{
// reduced to a single column ?
if (length == 1)
// can these two borders be next to each other ?
return neighbors.count(std::make_pair(left, right));
// memoize
auto id = std::make_tuple(left, right, length);
// I don't add "modulo" to the key to keep it simple
static std::map<std::tuple<Border, Border, unsigned long long>, unsigned long long> cache;
auto lookup = cache.find(id);
if (lookup != cache.end())
return lookup->second;
// split region into two parts: every possible border can be at the splitting point
unsigned long long result = 0;
for (const auto& next : borders)
{
// prefer a "power of two"-splitting, causes less states than splitting 50:50
unsigned long long pow2 = 1;
while (pow2 < length / 2)
pow2 *= 2;
//pow2 = length / 2; // alternatively: less efficient 50:50 method
// process left half
auto leftHalf = search(left, next, pow2, modulo);
// process right half
auto rightHalf = search(next, right, length - pow2, modulo);
// each left half can be combined with each right half
auto combined = (leftHalf * rightHalf) % modulo;
result += combined;
}
result %= modulo;
cache[id] = result;
return result;
}
// slow search, no caching whatsoever
unsigned long long slow(const std::string& border, unsigned int length, unsigned int width, unsigned int modulo)
{
// walked across the whole board ?
if (length == width)
return (border == RightBorder) ? 1 : 0;
// proceed with each border that is compatible to the current one
unsigned long long result = 0;
for (auto x : neighbors)
if (x.first == border)
result += slow(x.second, length + 1, width, modulo);
return result % modulo;
}
// backtracking of possible paths, doesn't need the information about borders etc.
typedef std::vector<std::vector<unsigned int>> Grid;
unsigned int bruteForce(Grid& grid, unsigned int x, unsigned int y, unsigned int step)
{
// reached final position ?
if (x == 0 && y == 3)
return (step == grid.size() * grid[0].size()) ? 1 : 0;
// take a step
grid[x][y] = step;
// try to search deeper in each direction
unsigned int result = 0;
if (x > 0 && grid[x - 1][y] == 0)
result += bruteForce(grid, x - 1, y, step + 1);
if (x + 1 < grid.size() && grid[x + 1][y] == 0)
result += bruteForce(grid, x + 1, y, step + 1);
if (y > 0 && grid[x][y - 1] == 0)
result += bruteForce(grid, x, y - 1, step + 1);
if (y < 3 && grid[x][y + 1] == 0)
result += bruteForce(grid, x, y + 1, step + 1);
// undo step
grid[x][y] = 0;
return result;
}
int main()
{
// set up borders and their relationships
fill();
unsigned int modulo = 100000000;
unsigned long long limit = 1000000000000;
std::cin >> limit;
//#define BRUTEFORCE
#ifdef BRUTEFORCE
// allocate memory
Grid grid(limit);
for (auto& column : grid)
column.resize(4, 0);
// start in upper left corner (0,0), that's the first step
std::cout << bruteForce(grid, 0, 0, 1) << std::endl;
#endif
//#define SLOW
#ifdef SLOW
std::cout << slow(LeftBorder, 0, limit, modulo) << std::endl;
#endif
#define FAST
#ifdef FAST
std::cout << search(LeftBorder, RightBorder, limit, modulo) << std::endl;
#endif
return 0;
}