-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0244.cpp
266 lines (241 loc) · 7.69 KB
/
euler-0244.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
// ////////////////////////////////////////////////////////
// # Title
// Sliders
//
// # URL
// https://projecteuler.net/problem=244
// http://euler.stephan-brumme.com/244/
//
// # Problem
// You probably know the game Fifteen Puzzle. Here, instead of numbered tiles, we have seven red tiles and eight blue tiles.
//
// A move is denoted by the uppercase initial of the direction (Left, Right, Up, Down) in which the tile is slid,
// e.g. starting from configuration __(S)__, by the sequence __LULUR__ we reach the configuration __(E)__:
//
// || 10 || 10 ||
// || __(S)__ || __(E)__ ||
// ||  ||  ||
//
// For each path, its checksum is calculated by (pseudocode):
// `checksum = 0`
// `checksum = (checksum * 243 + m_1) mod 100000007`
// `checksum = (checksum * 243 + m_2) mod 100000007`
// ...
// `checksum = (checksum * 243 + m_n) mod 100000007`
// where `m_k` is the ASCII value of the k-th letter in the move sequence and the ASCII values for the moves are:
//
// || 2 || 2 ||
// || L ++ 76 ||
// || R ++ 82 ||
// || U ++ 85 ||
// || D ++ 68 ||
//
// For the sequence __LULUR__ given above, the checksum would be 19761398.
//
// Now, starting from configuration __(S)__, find all shortest ways to reach configuration __(T)__.
//
// || 10 || 10 ||
// || __(S)__ || __(T)__ ||
// ||  ||  ||
//
// What is the sum of all checksums for the paths having the minimal length?
//
// # Solved by
// Stephan Brumme
// September 2017
//
// # Algorithm
// I run a breadth-first search without any "tricks" or "specific optimizations" (see https://en.wikipedia.org/wiki/Breadth-first_search ):
// - encode a board as an ''std::string'', concatenate all rows to get a single line (initial board is ''".rbbrrbbrrbbrrbb"'')
// - store the checksum of all moves in a board, too
// - avoid visiting a board already seen before (my ''history'' container keeps track of that)
//
// I felt it was easier to "move" the empty square instead of moving an occupied square (onto the empty square).
// Therefore my variables ''fromX'', ''toX'', etc. in ''Board::move'' refer to the empty square - but then the actual moves look strange (''Left'' ==> increment ''toX'').
//
// # Note
// It's a classic computer science problem and therefore I found it to be pretty easy (I studied software engineering).
// Project Euler awarded it a high difficulty rating because mathematicians are probably not that familiar with typical IT algorithms.
// On the contrary, I've seen enough "easy" problems that were actually quite hard for me.
//
// # Alternative
// There are many opportunities to speed up the program or save some memory.
// For example, there is only one shortest path so I could abort ''search()'' as soon as I encounter it.
// Nevertheless, my live test "forces" me to look at all paths of the last iteration in case the user enters a board with multiple shortest paths.
#include <iostream>
#include <string>
#include <map>
#include <set>
#include <vector>
// encode the board by ASCII characters, too
enum Piece
{
Red = 'r',
Blue = 'b',
Empty = '.'
};
// moves as defined by the problem statement
enum Move
{
Up = 85, // 'U'
Left = 76, // 'L'
Down = 68, // 'D'
Right = 82 // 'R'
};
// represent a board (with moves needed to get there from the initial board)
struct Board
{
// the whole board as a one-line string, initial value is ".rbbrrbbrrbbrrbb"; (see enum Piece)
std::string pieces;
// checksum of executed moves
unsigned int checksum;
// 4x4 board
static const unsigned int Size = 4;
// create a new board
Board(const std::string& pieces_ = std::string(), unsigned int checksum_ = 0)
: pieces(pieces_), checksum(checksum_)
{}
// return true if pieces contains 16 characters (very basic check, will accept many invalid boards !)
bool isValid() const
{
return pieces.size() == Size * Size;
}
// return true if equal
bool operator==(const Board& other) const
{
return pieces == other.pieces;
}
// "move" the empty square, return an empty string if impossible
Board move(Move move) const
{
if (pieces.empty())
return Board();
// find the empty square
auto index = 0;
while (pieces[index] != Empty)
index++;
// from 1D to 2D
auto fromX = index % Size;
auto fromY = index / Size;
// new location of the empty square
auto toX = fromX;
auto toY = fromY;
// note: the moves are based on the movement of the red/blue square whereas
// I actually move the empty square, so everything's "reversed"
switch (move)
{
case Up:
if (fromY == Size - 1)
return Board();
toY++;
break;
case Down:
if (fromY == 0)
return Board();
toY--;
break;
case Left:
if (fromX == Size - 1)
return Board();
toX++;
break;
case Right:
if (fromX == 0)
return Board();
toX--;
break;
}
// from 2D to 1D ...
auto next = toY * Size + toX;
auto newPieces = pieces;
std::swap(newPieces[index], newPieces[next]);
// update checksum
auto newChecksum = (checksum * 243ULL + move) % 100000007;
return Board(std::move(newPieces), newChecksum);
}
};
// breadth search for a certain board, add all checksums
unsigned int search(const Board& finalBoard)
{
// initial configuration
std::vector<Board> todo = { Board(".rbbrrbbrrbbrrbb") };
// keep track of all boards already visited
std::set<std::string> history;
// sum of all checksums
unsigned int result = 0;
// look for the shortest path (there may be multiple !)
bool lastIteration = false;
while (!lastIteration)
{
std::vector<Board> next;
next.reserve(10000); // actually about 6500 is sufficient
for (auto current : todo)
{
// final position found ?
if (current == finalBoard)
{
lastIteration = true;
result += current.checksum;
}
// try all four movements:
// verify that the move is legal and avoid already visited positions
// L => left
auto left = current.move(Left);
if (left.isValid() && history.count(left.pieces) == 0)
{
next.push_back(left);
history.insert(left.pieces);
}
// R => right
auto right = current.move(Right);
if (right.isValid() && history.count(right.pieces) == 0)
{
next.push_back(right);
history.insert(right.pieces);
}
// U => up
auto up = current.move(Up);
if (up.isValid() && history.count(up.pieces) == 0)
{
next.push_back(up);
history.insert(up.pieces);
}
// D => down
auto down = current.move(Down);
if (down.isValid() && history.count(down.pieces) == 0)
{
next.push_back(down);
history.insert(down.pieces);
}
}
// prepare next iteration
todo = std::move(next);
}
return result;
}
int main()
{
std::string finalPosition = ".brbbrbrrbrbbrbr"; // example LULUR => "rrbbrbbbr.rbrrbb"
std::cin >> finalPosition;
// simple validation (for live test only)
auto numRed = 0;
auto numBlue = 0;
auto numEmpty = 0;
auto numInvalid = 0;
for (auto c : finalPosition)
{
switch (c)
{
case 'r': numRed++; break;
case 'b': numBlue++; break;
case '.': numEmpty++; break;
default: numInvalid++; break;
}
}
// reject invalid input
if (numRed != 7 || numBlue != 8 || numEmpty != 1 || numInvalid != 0)
return 1;
// let's go !
std::cout << search(Board(finalPosition)) << std::endl;
return 0;
}