-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy patheuler-0247.cpp
159 lines (146 loc) · 5.46 KB
/
euler-0247.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// ////////////////////////////////////////////////////////
// # Title
// Squares under a hyperbola
//
// # URL
// https://projecteuler.net/problem=247
// http://euler.stephan-brumme.com/247/
//
// # Problem
// Consider the region constrained by `1 <= x` and `0 <= y <= 1/x`.
//
// Let `S_1` be the largest square that can fit under the curve.
// Let `S_2` be the largest square that fits in the remaining area, and so on.
// Let the index of Sn be the pair (left, below) indicating the number of squares to the left of `S_n` and the number of squares below `S_n`.
//
// 
//
// The diagram shows some such squares labelled by number.
// `S_2` has one square to its left and none below, so the index of `S_2` is (1,0).
// It can be seen that the index of `S_32` is (1,1) as is the index of `S_50`.
// 50 is the largest `n` for which the index of `S_n` is (1,1).
//
// What is the largest `n` for which the index of `S_n` is (3,3)?
//
// # Solved by
// Stephan Brumme
// August 2017
//
// # Algorithm
// Each square has a lower-left corner `(x_0,y_0)` and an upper-right corner `(x_1,y_1)` such that:
// (1) `x_1 - x_0 = y_1 - y_0 = side` (length of each side of that square)
//
// The hyperbola `y = 1/x` must go through the upper-right corner:
// (2) `y_1 = dfrac{1}{x_1}`
//
// Substituting (2) in (1):
// (3) `x_1 - x_0 = dfrac{1}{x_1} - y_0`
//
// And solve for `x_1`:
// (4) `x_1 - dfrac{1}{x_1} = x_0 - y_0`
// (5) `dfrac{x^2_1 - 1}{x_1} = x_0 - y_0`
// (6) `x^2_1 - 1 = x_1 (x_0 - y_0)`
// (7) `0 = x^2_1 - x_1 (x_0 - y_0) - 1`
// (8) `0 = x^2_1 + x_1 (y_0 - x_0) - 1`
//
// That's a quadratic equation with parameters:
// (9) `p = y_0 - x_0`, `q = -1`
// (10) `x = -frac{p}{2} \pm sqrt{(frac{p}{2})^2 - q}`
//
// Omitting the second solution:
// (11) `x_1 = -frac{y_0 - x_0}{2} + sqrt{(frac{y_0 - x_0}{2})^2 + 1}`
// (12) `x_1 = frac{x_0 - y_0}{2} + frac{1}{2} sqrt{(x_0 - y_0)^2 + 4}`
// (13) `x_1 = 0.5 * (x_0 - y_0 + sqrt{(x_0 - y_0)^2 + 4})`
//
// Therefore the length of a side in (1) becomes:
// (14) `side = x_1 - x_0`
// (15) `side = 0.5 * (x_0 - y_0 + sqrt{(x_0 - y_0)^2 + 4}) - x_0`
//
// And a bit simplified:
// (16) `side = 0.5 * (-x_0 - y_0 + sqrt{(x_0 - y_0)^2 + 4})`
// (17) `side = 0.5 * (sqrt{(x_0 - y_0)^2 + 4} - x_0 - y_0)`
//
// That formula can be found in ''Square::setSideLength''.
//
// My program starts with a single square whose lower-left corner (x, y) is at (1, 0).
// All squares are stored in an ''std::set'' named ''todo'' which is sorted descendingly by the square's size
// (the overloaded ''Square::operator<'' returns the "wrong" result on purpose because an ''std::set'' is sorted ascendingly by default).
//
// I always pick the largest (==> the first) square from ''todo'' and replace it by its upper and right neighbor.
// Each square's position (x, y) and index (left, below) are tracked.
//
// In order to have a square at index (3, 3) I have to have a square at (2, 3) or (3, 2).
// Generalized, only if some squares are in ''todo'' where `left <= 3` and `below <= 3` and `left + below < 3+3` then it's
// still possible to generate a square at index (3, 3).
// ''candidates'' counts how many squares fulfil that condition. If ''candidates'' becomes zero then no more squares can be at (3,3).
// The most recent will be printed.
#include <iostream>
#include <set>
#include <cmath>
// a square is described by its lower left corner (x,y) and its index along x and y axis
struct Square
{
Square(double x_, double y_, unsigned int left_, unsigned int below_)
: x(x_), y(y_), left(left_), below(below_)
{
setSideLength();
}
// lower-left corner
double x;
double y;
// number of squares on the left side
unsigned int left;
// number of squares below
unsigned int below;
// length of a side
double side;
// note: sort in reverse, therefore return true if it's the larger (!) value
bool operator<(const Square& other) const
{
return side > other.side;
}
private:
// find length of edges of the largest square whose lower-left corner is at x,y
void setSideLength()
{
// see my explanations above
side = 0.5 * (sqrt((x - y) * (x - y) + 4) - x - y);
}
};
int main()
{
unsigned int indexLeft = 3;
unsigned int indexBelow = 3;
std::cin >> indexLeft >> indexBelow;
// square's number
unsigned int result = 0;
// create first square with lower-left corner at (1,0) and no other squares on its left or bottom side
std::set<Square> todo = { Square(1, 0, 0, 0) };
unsigned int candidates = 1; // => the first square is left of and below all other squares
while (candidates > 0)
{
result++;
// pick first (= largest) square
auto current = *(todo.begin());
// and remove it
todo.erase(todo.begin());
// create a new square on top of the current square
Square top (current.x, current.y + current.side,
current.left, current.below + 1);
todo.insert(top);
// and a square on the right side
Square right(current.x + current.side, current.y,
current.left + 1, current.below);
todo.insert(right);
// count how many squares could be on the left or bottom side of a square with index (3, 3)
if (top .left <= indexLeft && top .below <= indexBelow)
candidates++;
if (right .left <= indexLeft && right .below <= indexBelow)
candidates++;
if (current.left <= indexLeft && current.below <= indexBelow)
candidates--;
}
// show ID of last square with index (3, 3)
std::cout << result << std::endl;
return 0;
}